איך החמניות גדלות באופן מתמטי?
לאונרדו מפיזה, או פיבונאצ'י כמו שקרא לעצמו, היה כנראה גדול המתמטיקאים של ימי הביניים. במיוחד הוא ידוע כמי שגילה את סדרת המספרים המכונה על שמו "סדרת פיבונאצ'י".
כל איבר בסדרת פיבונאצ'י שווה לסכום של שני האיברים הקודמים לו. הוא לא הפסיק להתפעל מהקסם המתמטי של הסדרה הזו, כמו זה שביחסים בין ריבועי המספרים או ביופי של מה שהיא יוצרת בגאומטריה למשל, אבל אפילו הוא לא שיער כמה תופעות טבע מאופיינות במספרי פיבונאצ'י, כמו למשל העובדה שמספר עלי הכותרת בצמחים רבים הוא תמיד מספר פיבונצ'י, כמו 5, 8, 13 וכדומה.
מפתיע? - אז שימו לב לתופעה מרתקת אפילו יותר.. מסתבר שמספר הגרעינים שבפרח החמניה הם מספרי פיבונצ'י עוקבים. אם תביטו היטב, הם נראים כמו 2 ספירלות, שאחת היא בעלת 89 גרעינים והשנייה בת 55 גרעינים - שני מספרים עוקבים בסדרה (אגב, זה כך גם באצטרובלי עץ האורן).
ולמה זה קורה? - ובכן, נראה שהספירלות הללו מופיעות בפרחים כאלה ובאיצטרובלים, כדי למנוע מצב שבו הגרעינים יהיו צפופים מדי ויתקשו להתפתח. לכן הטבע מרבה אותם במספרי פיבונצ'י וכך נוצר המספר המרבי של גרעינים, מה שיבטיח שכפול מוצלח והמשך הדורות.
וזה לא הדבר היחיד שבו פיבונצ'י נראה בצמחים כאלו. מסתבר שאפילו זווית הגדילה של העלים על הגבעול, זו שמאפשרת לעלים החדשים לצמוח באופן שיקבלו הכי הרבה אור שמש, אפילו היא מתמטית ומדויקת. למעשה היא ידועה בתור יחס הזהב, כ-1.618. אם נחלק 360 מעלות של הגבעול העגול במספר 1.618 נקבל בדיוק את המיקומים שהטבע בחר לגדילת העלים על הגבעול. בינגו! - שוב הטבע הצטיין במתמטיקה והשתמש במספרי פיבונצ'י וביחס הזהב שנובע ממנו כדי להיטיב את גדילת הצמחים.
אז האמת שאין כאן פלא, חוץ מפלאי הטבע כמובן. סדרת פיבונאצ'י, שאנו כה מתפעלים ממנה כאן, היא הדרך שבה מאורגנים ומשוכפלים ביעילות מרכיבים רבים בטבע ובה פועלים ביעילות רבה כוחות טבעיים שונים. כשאנו מוצאים בחמניה את מספרי פיבונאצ'י, לכל היותר נוכל לומר שהחמניה "גדלה כמו שצריך".. אז אולי זה מופלא, אבל לא יותר מהפלא הבלתי נתפס של היקום כולו!
לאונרדו מפיזה, או פיבונאצ'י כמו שקרא לעצמו, היה כנראה גדול המתמטיקאים של ימי הביניים. במיוחד הוא ידוע כמי שגילה את סדרת המספרים המכונה על שמו "סדרת פיבונאצ'י".
כל איבר בסדרת פיבונאצ'י שווה לסכום של שני האיברים הקודמים לו. הוא לא הפסיק להתפעל מהקסם המתמטי של הסדרה הזו, כמו זה שביחסים בין ריבועי המספרים או ביופי של מה שהיא יוצרת בגאומטריה למשל, אבל אפילו הוא לא שיער כמה תופעות טבע מאופיינות במספרי פיבונאצ'י, כמו למשל העובדה שמספר עלי הכותרת בצמחים רבים הוא תמיד מספר פיבונצ'י, כמו 5, 8, 13 וכדומה.
מפתיע? - אז שימו לב לתופעה מרתקת אפילו יותר.. מסתבר שמספר הגרעינים שבפרח החמניה הם מספרי פיבונצ'י עוקבים. אם תביטו היטב, הם נראים כמו 2 ספירלות, שאחת היא בעלת 89 גרעינים והשנייה בת 55 גרעינים - שני מספרים עוקבים בסדרה (אגב, זה כך גם באצטרובלי עץ האורן).
ולמה זה קורה? - ובכן, נראה שהספירלות הללו מופיעות בפרחים כאלה ובאיצטרובלים, כדי למנוע מצב שבו הגרעינים יהיו צפופים מדי ויתקשו להתפתח. לכן הטבע מרבה אותם במספרי פיבונצ'י וכך נוצר המספר המרבי של גרעינים, מה שיבטיח שכפול מוצלח והמשך הדורות.
וזה לא הדבר היחיד שבו פיבונצ'י נראה בצמחים כאלו. מסתבר שאפילו זווית הגדילה של העלים על הגבעול, זו שמאפשרת לעלים החדשים לצמוח באופן שיקבלו הכי הרבה אור שמש, אפילו היא מתמטית ומדויקת. למעשה היא ידועה בתור יחס הזהב, כ-1.618. אם נחלק 360 מעלות של הגבעול העגול במספר 1.618 נקבל בדיוק את המיקומים שהטבע בחר לגדילת העלים על הגבעול. בינגו! - שוב הטבע הצטיין במתמטיקה והשתמש במספרי פיבונצ'י וביחס הזהב שנובע ממנו כדי להיטיב את גדילת הצמחים.
אז האמת שאין כאן פלא, חוץ מפלאי הטבע כמובן. סדרת פיבונאצ'י, שאנו כה מתפעלים ממנה כאן, היא הדרך שבה מאורגנים ומשוכפלים ביעילות מרכיבים רבים בטבע ובה פועלים ביעילות רבה כוחות טבעיים שונים. כשאנו מוצאים בחמניה את מספרי פיבונאצ'י, לכל היותר נוכל לומר שהחמניה "גדלה כמו שצריך".. אז אולי זה מופלא, אבל לא יותר מהפלא הבלתי נתפס של היקום כולו!