שלום,
נראה שכבר הכרתם את אאוריקה. בטח כבר גיליתם כאן דברים מדהימים, אולי כבר שאלתם שאלות וקיבלתם תשובות טובות.
נשמח לראות משהו מכם בספר האורחים שלנו: איזו מילה טובה, חוות דעת, עצה חכמה לשיפור או כל מה שיש לכם לספר לנו על אאוריקה, כפי שאתם חווים אותה.
»
«
מהם סוכני AI ומה הם עושים?
שנת 2024 מסמנת את הגעתם של תוכנות אוטונומיות, או יישומים שנתמכים ב-AI ומסוגלים לתפוס את סביבתם, לקבל החלטות ולנקוט פעולות להשגת מטרות ספציפיות עבורנו המשתמשים.
בשנה זו החלה תעשיית ה-AI במרוץ לפיתוח מה שנקראים בשפה הפופולרית "סוכנים חכמים" (AI agents), או LLM Agents.
סוכני AI הם מנועי תוכנה מבוססי בינה מלאכותית שיכולים לבצע משימות באופן אוטונומי, עצמאי. לרוב הם יכולים ממש לחקות התנהגות של בני אדם.
הבינה המלאכותית מאפשרת כיום לסוכן AI שכזה לבצע פעולות בעצמו. בניגוד לכלי GenAI שמתמקדים בדרך כלל ביצירה של תוכן כמו טקסט, תמונות, סרטונים ומוסיקה - הסוכנים החכמים, ה-AI Agents הללו, מיועדים לפתרון בעיות ממוקד ולביצוע של משימות מורכבות.
סוכן AI ממיר את הידע של כיצד לעשות דברים ליכולת אמיתית לעשות אותם ולעשייה ממוקדת כזו, לפי צרכי המשתמש.
סוכני ה-AI נקראים כך מכיוון שהם עושים את העבודה במקום המשתמש. הם מאפשרים אוטומציות של פעולות מורכבות ותובעניות מבחינת זמן ובכך הם מביאים להחזר השקעה מהיר. לארגונים וחברות הם מאפשרים להגדיל את הצמיחה ולחסוך לטווח הארוך הרבה כסף.
סוכן ה-AI הוא המשך של הצ'טבוטים הוותיקים והעוזרים החכמים שעזרו לנו בעשור השני של המאה ה-21. הוא הופך את האינטליגנציה של הבינה המלאכותית לפעולה וליכולות ביצוע. הוא מבין את ההוראות שלך, מעבד את המידע הזה ומספקים את מה שביקשת - תשובה, פתרון, הסבר או עזרה בהשלמת משימה.
ברגע שהוא מוגדר היטב ומצויד בכלי ה-AI המתאימים, הסוכן החכם מטפל במשימות באופן מושכל ומדויק, מבצע באופן אוטומטי פעולות מעייפות ושוחקות, לצד "עבודות שחורות" וכך הוא משחרר את המשתמשים להתמקד בעניינים חשובים יותר.
כשהסוכנים החכמים הללו עובדים, כולנו מבינים, המשימה תבוצע, בהתחייבות של AI. זו מהפכה שעומדת להיות מהפכה מטורפת ומובילי הטכנולוגיה חוזים שהאייג'נטים הללו, אותם סוכני AI, יהיו התוכנות החדשות, שהעולם יהיה מלא בהם.
אבל מיהם אותם סוכנים ומה בדיוק הם מאומנים ויכולים לעשות בשבילנו?
#מה זה סוכן AI?
אם AI באנגלית הוא ראשי התיבות של בינה מלאכותית, צריך להבין שבינה מלאכותית לכשעצמה היא מוח גולמי עם ים של פוטנציאל. אבל עד שלא נשאל אותה, עד שלא נבקש ממנה לעשות משהו ספציפי, ניתן לה תפקיד או משימה, היא לא תהיה ממש שימושית.
וזו בדיוק המשמעות של סוכן חכם, או סוכן AI. אם בינה מלאכותית היא גאון עם המון יכולת, אך סוג של "ראש קטן", סוכן AI הוא ביצועיסט, בינה מעשית שבאמת נותנת עבודה. יש לה יכולות מסוימות ומוגדרות והיא מתמחה בהן ורק בהן ואותן היא מבטיחה לבצע.
במילים פשוטות, האייג'נט עם ה-AI הוא עוזר וירטואלי חכם שמסוגל לבצע בעצמו משימות ספציפיות, תוך שימוש יעיל ביכולות הבינה המלאכותית. כמו ששעון מעורר יכול להעיר אותנו בבוקר, סוכני בינה ספציפיים כאלו יכולים לבדוק ולענות על המיילים שלנו, לקבוע לנו פגישות, לערוך קניות, למכור שירותים ומוצרים ללקוחות, לתכנן טיול או חופשה בחו"ל, חיפוש באינטרנט, הזמנת טיסות, למצוא לנו בדיחות לערב סטנדאפ בכיכובנו, או לנגן לנו מוסיקה לפי מצב הרוח שלנו.
כלומר, בזמן שבינה מלאכותית עניינה להיות חכמה נורא ולדעת הכל, הסוכן החכם עם ה-AI הוא הגרסה המעשית. הוא זה שמבצע משימות מוגדרות ומבצע אותן היטב. אפשר לדמות אותו למישהו מוכשר שמתגייס לצבא ואחרי שאומן לביצוע משימות מסוימות. הוא ממתין לפקודות שיקבל, או מבצע משימות לפי זמנים ותגובות, וכשהגיע הזמן לבצע את המשימה, או כשהוא מקבל פקודה לביצוע, הוא "עושה את מה שצריך" ומבצע וממלא את ההוראות.
#איך הם עושים זאת?
התשובה הכי קצרה היא: באמצעות ביצוע של משימות בצורה חכמה, עצמאית ויעילה.
סוכני AI מאומנים ומצוידים, כך שהם יידעו כיצד להגיב הכי טוב לדרישות, למצבים ולצרכים שונים. הם מבצעים את המבוקש מהם, לאחר שקיבלו הוראות מפורטות וגם נתונים שהם צריכים לקבל או לאתר.
סוכנים מצוידי AI נבנו כך שיהיו מסוגלים להבין דרישות, לחוש את המשתמש, לפרש נתונים, להבין את הסביבה, לקבל החלטות מושכלות ולבצע פעולות מורכבות יחסית - עד שיצליחו להשיג את המטרות שהוגדרו מראש.
כך מצליחים סוכני בינה מלאכותית כאלו להגביר את היעילות שלהם עבורנו, בני האדם. הם עושים זאת למשל, על ידי אוטומציה של משימות שגרתיות שמוטלות עלינו, מה שנקרא לא פעם "עבודה שחורה".
בכך מאפשרים הסוכנים הבינתיים הללו לעובדים האנושיים שאנחנו, להתרכז באסטרטגיה ויצירתיות.
מודלי השפה הרחבים (LLMs) שבהם הם מצוידים מאפשרים לאייג'נטים הללו לבצע משימות בצורה עצמאית ויעילה. עוד משולבים בהם מודלים מתקדמים לעיבוד שפה טבעית, מה שמאפשר להם להבין פרומפטים, הוראות, הנחיות וטקסטים בכתיבה טבעית. תוך יישום של טכניקות ניתוח מתקדמות כמו "העץ המחשבה" או "שרשרת המחשבה" וביחד עם טכניקות ויכולות של למידת מכונה, הם יכולים להציע ביצועים מדהימים.
הסוכנים הללו משפרים את הפרודוקטיביות, מפחיתים טעויות ומאפשרים שיתוף. חלקם ממלאים משימות מוגדרות מראש, אחרים עונים על שאלות, יש היכולים לתקשר בקול אנושי ולנהל שיחה רגילה. לעתים הם מתוכנתים לנהוג ולחשוב כאילו הם פקיד, מזכירה, מנהל חשבונות, מדענית, סוכן נסיעות או תחקירן - רבים מהם ספציפיים וממלאים משימה אחת היטב ואחרים ממלאים מגוון של משימות ואפילו בו-זמנית.
ההבנה היא שבאמצעות יכולת ניתוח של נתונים מורכבים ויכולת למידה מתמשכת הסוכנים החכמים הללו ימשיכו לפעול ולצבור ניסיון, תוך שהם הופכים ומתחדדים, לכלים נבונים ובעלי ביצועים טובים יותר ויותר.
#איך עובדים איתם?
אתם נכנסים לסוכן אינטליגנטי שאתם יודעים שמבצע משימה מסוימת ונותנים לו הוראות. מצידו, תהליך העבודה מתחיל בקבלת המטרה המוגדרת שנתתם לו. הוא מפתח במהירות הבזק תוכנית פעולה, בוחר את הכלים המתאימים לביצוע של המשימה שלא פעם הוא יפרק למשימות משנה וכאן מגיע ביצוע המשימות בפועל והערכה של התוצאות.
הכל מתבצע בצורה אוטונומית, מבלי להיעזר בכם. בדרך כלל הסוכן מסתמך על נתונים והקשרים שנאספו במהלך ה"שיחות" הקודמות שלכם ו"לומד אתכם" ומה הציפיות שלכם ממנו.
כי אחת התכונות החשובות של סוכני AI נעוצה ביכולת שלהם ללמוד ולהשתפר לאורך זמן. הם מנתחים כל הזמן את תגובותיכם והפעולות שלכם, לומדים מהמשוב שקיבלו מכם ומבצעים התאמות שישפרו את הביצועים שלהם. כך יכולים סוכני AI להתפתח ולהתאים את עצמם לצרכים המשתנים שלכם ולהגיב טוב ומדויק יותר למגוון רחב של צרכים וסיטואציות.
הסוכן AI מגיש לכם את התוצאות ואתם מוזמנים להמשיך ולנהל איתו דיאלוג. אפשר לבקש ממנו הרחבות ושיפורים. תוכלו גם להכניס שינויים בבקשה המקורית או עדכונים, להטיל עליו לבצע פעולות שישפרו את הדיוק למה שיתאים לצרכים שלכם וכך הלאה.
#דוגמאות?
האפשרויות כמעט אינסופיות. כבר היום יש סוכנים חכמים רבים. יש מהם שיכולים לבצע חישובים, לחפש באינטרנט, להבין תמונות, לנתח מסמכים מורכבים, לגשת למאגרי מידע ולהפעיל המון כלים נוספים.
יש סוכנים שנותנים תשובות על שאלות בתחומים שונים כמו משפטים או מיסים, אחרים בונים תכנית טיול שמותאמת לבקשותינו ולכלל המשתנים, יש שמזמינים כרטיסים להופעות או מקומות במסעדות, אחרים מנסחים טקסטים וכדומה.
יש מהם שמבצעים אוטומציות שעושות בשבילך את העבודה, ממיינות את המיילים או מטפלות ב-To do list, כלומר ניהול המשימות האישי ועוד.
סוכני AI ייעודיים אחרים מפיקים טקסטים מותאמים אישית, למטרות כמו אימיילים, דו"חות, קורות חיים וחומרי שיווק. יכולותיהם מתגלות במיטבן כשהם מצליחים להתאים את רמת האוטונומיה שלהם, בהתאם לצרכים של המשתמשים ומטרותיהם.
הנה הסבר על סוכני AI:
https://youtu.be/wazHMMaiDEA
הבשלת היכולות של סוכנים חכמים מצוידי AI היא תוצאה של שנות התפתחות רבות:
https://youtu.be/WftLJZw6Cf8
צריך לתת סיכוי לסוכני AI חכמים (מתורגם):
https://youtu.be/xq8Ws1jyBX4
סוכן AI לפיתוח כלי תוכנה ואפליקציות רשת:
https://youtu.be/Wvyc2E6OHm8
הצ'טבוט המתקדם של Open AI שמשמש מתורגמן:
https://youtu.be/c2DFg53Zhvw
הכירו את ה-Projects של קלוד לבניית ושימוש בסוכני AI (עברית):
https://youtu.be/8mWR1r28ia4
הנה הסבר מקיף של סוכני ה-AI החדשים:
https://youtu.be/S9dc0y_Zesc?long=yes
והדגמת GPT 4o שהופך לסוכן AI ומסוגל לעשות פעולות שונות בשירותך:
https://youtu.be/DrKkKLEditU?long=yes
שנת 2024 מסמנת את הגעתם של תוכנות אוטונומיות, או יישומים שנתמכים ב-AI ומסוגלים לתפוס את סביבתם, לקבל החלטות ולנקוט פעולות להשגת מטרות ספציפיות עבורנו המשתמשים.
בשנה זו החלה תעשיית ה-AI במרוץ לפיתוח מה שנקראים בשפה הפופולרית "סוכנים חכמים" (AI agents), או LLM Agents.
סוכני AI הם מנועי תוכנה מבוססי בינה מלאכותית שיכולים לבצע משימות באופן אוטונומי, עצמאי. לרוב הם יכולים ממש לחקות התנהגות של בני אדם.
הבינה המלאכותית מאפשרת כיום לסוכן AI שכזה לבצע פעולות בעצמו. בניגוד לכלי GenAI שמתמקדים בדרך כלל ביצירה של תוכן כמו טקסט, תמונות, סרטונים ומוסיקה - הסוכנים החכמים, ה-AI Agents הללו, מיועדים לפתרון בעיות ממוקד ולביצוע של משימות מורכבות.
סוכן AI ממיר את הידע של כיצד לעשות דברים ליכולת אמיתית לעשות אותם ולעשייה ממוקדת כזו, לפי צרכי המשתמש.
סוכני ה-AI נקראים כך מכיוון שהם עושים את העבודה במקום המשתמש. הם מאפשרים אוטומציות של פעולות מורכבות ותובעניות מבחינת זמן ובכך הם מביאים להחזר השקעה מהיר. לארגונים וחברות הם מאפשרים להגדיל את הצמיחה ולחסוך לטווח הארוך הרבה כסף.
סוכן ה-AI הוא המשך של הצ'טבוטים הוותיקים והעוזרים החכמים שעזרו לנו בעשור השני של המאה ה-21. הוא הופך את האינטליגנציה של הבינה המלאכותית לפעולה וליכולות ביצוע. הוא מבין את ההוראות שלך, מעבד את המידע הזה ומספקים את מה שביקשת - תשובה, פתרון, הסבר או עזרה בהשלמת משימה.
ברגע שהוא מוגדר היטב ומצויד בכלי ה-AI המתאימים, הסוכן החכם מטפל במשימות באופן מושכל ומדויק, מבצע באופן אוטומטי פעולות מעייפות ושוחקות, לצד "עבודות שחורות" וכך הוא משחרר את המשתמשים להתמקד בעניינים חשובים יותר.
כשהסוכנים החכמים הללו עובדים, כולנו מבינים, המשימה תבוצע, בהתחייבות של AI. זו מהפכה שעומדת להיות מהפכה מטורפת ומובילי הטכנולוגיה חוזים שהאייג'נטים הללו, אותם סוכני AI, יהיו התוכנות החדשות, שהעולם יהיה מלא בהם.
אבל מיהם אותם סוכנים ומה בדיוק הם מאומנים ויכולים לעשות בשבילנו?
#מה זה סוכן AI?
אם AI באנגלית הוא ראשי התיבות של בינה מלאכותית, צריך להבין שבינה מלאכותית לכשעצמה היא מוח גולמי עם ים של פוטנציאל. אבל עד שלא נשאל אותה, עד שלא נבקש ממנה לעשות משהו ספציפי, ניתן לה תפקיד או משימה, היא לא תהיה ממש שימושית.
וזו בדיוק המשמעות של סוכן חכם, או סוכן AI. אם בינה מלאכותית היא גאון עם המון יכולת, אך סוג של "ראש קטן", סוכן AI הוא ביצועיסט, בינה מעשית שבאמת נותנת עבודה. יש לה יכולות מסוימות ומוגדרות והיא מתמחה בהן ורק בהן ואותן היא מבטיחה לבצע.
במילים פשוטות, האייג'נט עם ה-AI הוא עוזר וירטואלי חכם שמסוגל לבצע בעצמו משימות ספציפיות, תוך שימוש יעיל ביכולות הבינה המלאכותית. כמו ששעון מעורר יכול להעיר אותנו בבוקר, סוכני בינה ספציפיים כאלו יכולים לבדוק ולענות על המיילים שלנו, לקבוע לנו פגישות, לערוך קניות, למכור שירותים ומוצרים ללקוחות, לתכנן טיול או חופשה בחו"ל, חיפוש באינטרנט, הזמנת טיסות, למצוא לנו בדיחות לערב סטנדאפ בכיכובנו, או לנגן לנו מוסיקה לפי מצב הרוח שלנו.
כלומר, בזמן שבינה מלאכותית עניינה להיות חכמה נורא ולדעת הכל, הסוכן החכם עם ה-AI הוא הגרסה המעשית. הוא זה שמבצע משימות מוגדרות ומבצע אותן היטב. אפשר לדמות אותו למישהו מוכשר שמתגייס לצבא ואחרי שאומן לביצוע משימות מסוימות. הוא ממתין לפקודות שיקבל, או מבצע משימות לפי זמנים ותגובות, וכשהגיע הזמן לבצע את המשימה, או כשהוא מקבל פקודה לביצוע, הוא "עושה את מה שצריך" ומבצע וממלא את ההוראות.
#איך הם עושים זאת?
התשובה הכי קצרה היא: באמצעות ביצוע של משימות בצורה חכמה, עצמאית ויעילה.
סוכני AI מאומנים ומצוידים, כך שהם יידעו כיצד להגיב הכי טוב לדרישות, למצבים ולצרכים שונים. הם מבצעים את המבוקש מהם, לאחר שקיבלו הוראות מפורטות וגם נתונים שהם צריכים לקבל או לאתר.
סוכנים מצוידי AI נבנו כך שיהיו מסוגלים להבין דרישות, לחוש את המשתמש, לפרש נתונים, להבין את הסביבה, לקבל החלטות מושכלות ולבצע פעולות מורכבות יחסית - עד שיצליחו להשיג את המטרות שהוגדרו מראש.
כך מצליחים סוכני בינה מלאכותית כאלו להגביר את היעילות שלהם עבורנו, בני האדם. הם עושים זאת למשל, על ידי אוטומציה של משימות שגרתיות שמוטלות עלינו, מה שנקרא לא פעם "עבודה שחורה".
בכך מאפשרים הסוכנים הבינתיים הללו לעובדים האנושיים שאנחנו, להתרכז באסטרטגיה ויצירתיות.
מודלי השפה הרחבים (LLMs) שבהם הם מצוידים מאפשרים לאייג'נטים הללו לבצע משימות בצורה עצמאית ויעילה. עוד משולבים בהם מודלים מתקדמים לעיבוד שפה טבעית, מה שמאפשר להם להבין פרומפטים, הוראות, הנחיות וטקסטים בכתיבה טבעית. תוך יישום של טכניקות ניתוח מתקדמות כמו "העץ המחשבה" או "שרשרת המחשבה" וביחד עם טכניקות ויכולות של למידת מכונה, הם יכולים להציע ביצועים מדהימים.
הסוכנים הללו משפרים את הפרודוקטיביות, מפחיתים טעויות ומאפשרים שיתוף. חלקם ממלאים משימות מוגדרות מראש, אחרים עונים על שאלות, יש היכולים לתקשר בקול אנושי ולנהל שיחה רגילה. לעתים הם מתוכנתים לנהוג ולחשוב כאילו הם פקיד, מזכירה, מנהל חשבונות, מדענית, סוכן נסיעות או תחקירן - רבים מהם ספציפיים וממלאים משימה אחת היטב ואחרים ממלאים מגוון של משימות ואפילו בו-זמנית.
ההבנה היא שבאמצעות יכולת ניתוח של נתונים מורכבים ויכולת למידה מתמשכת הסוכנים החכמים הללו ימשיכו לפעול ולצבור ניסיון, תוך שהם הופכים ומתחדדים, לכלים נבונים ובעלי ביצועים טובים יותר ויותר.
#איך עובדים איתם?
אתם נכנסים לסוכן אינטליגנטי שאתם יודעים שמבצע משימה מסוימת ונותנים לו הוראות. מצידו, תהליך העבודה מתחיל בקבלת המטרה המוגדרת שנתתם לו. הוא מפתח במהירות הבזק תוכנית פעולה, בוחר את הכלים המתאימים לביצוע של המשימה שלא פעם הוא יפרק למשימות משנה וכאן מגיע ביצוע המשימות בפועל והערכה של התוצאות.
הכל מתבצע בצורה אוטונומית, מבלי להיעזר בכם. בדרך כלל הסוכן מסתמך על נתונים והקשרים שנאספו במהלך ה"שיחות" הקודמות שלכם ו"לומד אתכם" ומה הציפיות שלכם ממנו.
כי אחת התכונות החשובות של סוכני AI נעוצה ביכולת שלהם ללמוד ולהשתפר לאורך זמן. הם מנתחים כל הזמן את תגובותיכם והפעולות שלכם, לומדים מהמשוב שקיבלו מכם ומבצעים התאמות שישפרו את הביצועים שלהם. כך יכולים סוכני AI להתפתח ולהתאים את עצמם לצרכים המשתנים שלכם ולהגיב טוב ומדויק יותר למגוון רחב של צרכים וסיטואציות.
הסוכן AI מגיש לכם את התוצאות ואתם מוזמנים להמשיך ולנהל איתו דיאלוג. אפשר לבקש ממנו הרחבות ושיפורים. תוכלו גם להכניס שינויים בבקשה המקורית או עדכונים, להטיל עליו לבצע פעולות שישפרו את הדיוק למה שיתאים לצרכים שלכם וכך הלאה.
#דוגמאות?
האפשרויות כמעט אינסופיות. כבר היום יש סוכנים חכמים רבים. יש מהם שיכולים לבצע חישובים, לחפש באינטרנט, להבין תמונות, לנתח מסמכים מורכבים, לגשת למאגרי מידע ולהפעיל המון כלים נוספים.
יש סוכנים שנותנים תשובות על שאלות בתחומים שונים כמו משפטים או מיסים, אחרים בונים תכנית טיול שמותאמת לבקשותינו ולכלל המשתנים, יש שמזמינים כרטיסים להופעות או מקומות במסעדות, אחרים מנסחים טקסטים וכדומה.
יש מהם שמבצעים אוטומציות שעושות בשבילך את העבודה, ממיינות את המיילים או מטפלות ב-To do list, כלומר ניהול המשימות האישי ועוד.
סוכני AI ייעודיים אחרים מפיקים טקסטים מותאמים אישית, למטרות כמו אימיילים, דו"חות, קורות חיים וחומרי שיווק. יכולותיהם מתגלות במיטבן כשהם מצליחים להתאים את רמת האוטונומיה שלהם, בהתאם לצרכים של המשתמשים ומטרותיהם.
הנה הסבר על סוכני AI:
https://youtu.be/wazHMMaiDEA
הבשלת היכולות של סוכנים חכמים מצוידי AI היא תוצאה של שנות התפתחות רבות:
https://youtu.be/WftLJZw6Cf8
צריך לתת סיכוי לסוכני AI חכמים (מתורגם):
https://youtu.be/xq8Ws1jyBX4
סוכן AI לפיתוח כלי תוכנה ואפליקציות רשת:
https://youtu.be/Wvyc2E6OHm8
הצ'טבוט המתקדם של Open AI שמשמש מתורגמן:
https://youtu.be/c2DFg53Zhvw
הכירו את ה-Projects של קלוד לבניית ושימוש בסוכני AI (עברית):
https://youtu.be/8mWR1r28ia4
הנה הסבר מקיף של סוכני ה-AI החדשים:
https://youtu.be/S9dc0y_Zesc?long=yes
והדגמת GPT 4o שהופך לסוכן AI ומסוגל לעשות פעולות שונות בשירותך:
https://youtu.be/DrKkKLEditU?long=yes
מה זה NLP או עיבוד שפה טבעית ב-AI?
עיבוד שפה טבעית, או NLP, משתמש במחשבים ובטכנולוגיות של בינה מלאכותית, המתמקדות בפיתוח אלגוריתמים המאפשרים למחשבים לקרוא, להבין ולתקשר בשפה רגילה, כתובה או מדוברת אבל טבעית, שפה של בני אדם.
NLP הם ראשי תיבות של "Natural Language Processing" ובעברית "עיבוד שפה טבעית". זהו תת-תחום בבינה מלאכותית, הקשור בצד הבלשני שלה, צד השפה המדוברת.
ניתן לומר בפשטות שהמטרה של עיבוד שפה טבעית היא שמחשבים יוכלו לתקשר עם בני אדם באותו אופן בו אנו, בני האדם, מתקשרים בינינו.
עיבוד השפה הטבעית קשור לתחום הבלשנות החישובית והוא משלב רעיונות מתחום מדעי המחשב בחקר השפה האנושית. התחום הזה במחשוב עוסק בבעיות הקשורות לעיבוד, טיפול ושינויים או מניפולציה של השפה הטבעית האנושית.
מטרת ה-NLP היא להבין שפות אנושיות, לנתח את התוכן והכוונה של המסרים שבהן ולהצליח לפרש את משמעותם הבסיסית, כך שניתן יהיה לגרום למחשבים "להבין" דברים שנכתבים או נאמרים בשפה הטבעית, כלומר בשפות של בני-אדם.
לשם כך, מודלים של NLP משתמשים בנוסחאות או בעצם אלגוריתמים של למידת מכונה, יחד עם שילוב כללים מוגדרים מראש.
בשנים האחרונות זוכה התחום לעניין רב, כחלק מהפיתוח של יישומי מחשב, רובם מבוססי בינה מלאכותית, יישומים שהתקשורת עימם היא בשפה אנושית.
רבים מהכלים הללו מחייבים תיאורים מילוליים של התוצר המצופה מהם, מנהלים שיחה עם המשתמש או מטפלים בטקסטים באופנים שונים. חלקם מייצרים ויוצרים יצירות באופן דומה ליצירה אנושית, מה שמחייב הנחיות, פרומפטים המהווים תיאור טקסטואלי של תוכן ואופי התוצרים המצופים, כמו תמונות, סרטים, מוסיקה, קוד ועוד.
עיבוד השפה הטבעית קשור לתחום הבלשנות החישובית והוא משלב רעיונות מתחום מדעי המחשב בחקר השפה האנושית.
הנה הסבר פשוט של NLP במדעי המחשב:
https://youtu.be/pqgUfv7UP4A
היישומים המדהימים של עיבוד שפה טבעית לתקשורת בינינו ובין מערכות AI:
https://youtu.be/TZMZvULBVio
זה עיבוד שפה טבעית בלמידת מכונה:
https://youtu.be/CMrHM8a3hqw
מטרת ה-NLP בעולם של ימינו:
https://youtu.be/7NObIGHhQWA
עיבוד השפה הטבעית בטכנולוגיות AI יומיומיות:
https://youtu.be/43cXcuXGnXk
אי אפשר לדבר על NLP בלי לדבר על LLM (עברית):
https://youtu.be/ugxgxqRg2-I
פרמטרים וטוקנים הם לא הכל במודלים:
https://youtu.be/a1nqXQMOCks
עיבוד שפה טבעית, או NLP, משתמש במחשבים ובטכנולוגיות של בינה מלאכותית, המתמקדות בפיתוח אלגוריתמים המאפשרים למחשבים לקרוא, להבין ולתקשר בשפה רגילה, כתובה או מדוברת אבל טבעית, שפה של בני אדם.
NLP הם ראשי תיבות של "Natural Language Processing" ובעברית "עיבוד שפה טבעית". זהו תת-תחום בבינה מלאכותית, הקשור בצד הבלשני שלה, צד השפה המדוברת.
ניתן לומר בפשטות שהמטרה של עיבוד שפה טבעית היא שמחשבים יוכלו לתקשר עם בני אדם באותו אופן בו אנו, בני האדם, מתקשרים בינינו.
עיבוד השפה הטבעית קשור לתחום הבלשנות החישובית והוא משלב רעיונות מתחום מדעי המחשב בחקר השפה האנושית. התחום הזה במחשוב עוסק בבעיות הקשורות לעיבוד, טיפול ושינויים או מניפולציה של השפה הטבעית האנושית.
מטרת ה-NLP היא להבין שפות אנושיות, לנתח את התוכן והכוונה של המסרים שבהן ולהצליח לפרש את משמעותם הבסיסית, כך שניתן יהיה לגרום למחשבים "להבין" דברים שנכתבים או נאמרים בשפה הטבעית, כלומר בשפות של בני-אדם.
לשם כך, מודלים של NLP משתמשים בנוסחאות או בעצם אלגוריתמים של למידת מכונה, יחד עם שילוב כללים מוגדרים מראש.
בשנים האחרונות זוכה התחום לעניין רב, כחלק מהפיתוח של יישומי מחשב, רובם מבוססי בינה מלאכותית, יישומים שהתקשורת עימם היא בשפה אנושית.
רבים מהכלים הללו מחייבים תיאורים מילוליים של התוצר המצופה מהם, מנהלים שיחה עם המשתמש או מטפלים בטקסטים באופנים שונים. חלקם מייצרים ויוצרים יצירות באופן דומה ליצירה אנושית, מה שמחייב הנחיות, פרומפטים המהווים תיאור טקסטואלי של תוכן ואופי התוצרים המצופים, כמו תמונות, סרטים, מוסיקה, קוד ועוד.
עיבוד השפה הטבעית קשור לתחום הבלשנות החישובית והוא משלב רעיונות מתחום מדעי המחשב בחקר השפה האנושית.
הנה הסבר פשוט של NLP במדעי המחשב:
https://youtu.be/pqgUfv7UP4A
היישומים המדהימים של עיבוד שפה טבעית לתקשורת בינינו ובין מערכות AI:
https://youtu.be/TZMZvULBVio
זה עיבוד שפה טבעית בלמידת מכונה:
https://youtu.be/CMrHM8a3hqw
מטרת ה-NLP בעולם של ימינו:
https://youtu.be/7NObIGHhQWA
עיבוד השפה הטבעית בטכנולוגיות AI יומיומיות:
https://youtu.be/43cXcuXGnXk
אי אפשר לדבר על NLP בלי לדבר על LLM (עברית):
https://youtu.be/ugxgxqRg2-I
פרמטרים וטוקנים הם לא הכל במודלים:
https://youtu.be/a1nqXQMOCks
מהם טוקנים ב-AI ולמידת מכונה?
מאסימוני הטלפונים ועד עולם אבטחת מערכות מחשוב, טוקן (Token), בעברית “אסימון”, הוא מושג המשתנה בהתאם להקשר שבו הוא מוזכר. אפילו בתוך עולם המחשבים יש למושג טוקן כמה שימושים.
בלמידת מכונה, אחת הזירות המרתקות של העידן המודרני והתחום בו פועלים המודלים הפופולריים של ימינו, כמו Claude או ChatGPT, לטוקנים יש משמעות אדירה.
אותם מודלים גדולים, LLMים, הם מודלים מתמטיים. כדי לבצע את המשימות שאנו מבקשים מהם, תוך כדי תקשורת איתם בשפה טבעית, כמו אנגלית, עברית וכדומה, הם משתמשים בתהליך שנקרא "טוקניזציה".
במרכז הטוקניזציה נעשה פילוח של הטקסטים שהמודלים הללו מקבלים כנתונים, כדאטה, ליחידות קטנות יותר, תרגום של חלקי המידע הקטנים למספרים, כשאת יחידות המידע הללו, שהומרו למספרים, הם ינתחו בהמשך.
כך, אחרי שמסתיימת הטוקניזציה, הם מייצרים מהמידע טוקנים, מספרים שכל אחד מהם מייצג פריט מידע קטן. ה"טוקן" משמש בהם בתפקיד "אסימון למידת המכונה", שמתאר באופן מתמטי את יחידות הטקסט הקטנות. אלה מעין יחידות מידה שהמודלים המוכרים יוצרים מהקונטקסט.
לאחר שסיימו להפוך את המידע לטוקנים, מרבית המודלים שאנו מכירים הטוקנים משמשים לייצוג של הטקסט, ביחידות קטנות שהמודל מעבד בצורה מתמטית.
כשאנו משתמשים בטוקנים, זה כדי לסייע למודל להבין את המבנה של הטקסט, כך שיוכל לבצע על פיו את החישובים שלו. טוקן אחד יכול להיות כל חלק ממילה בשפה הרגילה שלנו, או אפילו תו אחד.
כדי להבין ולהגיב לקלט, המודל משתמש בכמות מסוימת של טוקנים. וטוקן יכול להיות כל פיסת מידע, מתו בודד ועד מילה שלמה ולעתים גם יותר. יש שיטות שונות של טוקניזציה והבחירה ביניהן היא בהתאם לאלגוריתם בו משתמשים. יש שהאסימון הוא לפי תווים (Character tokenization), אסימון לפי מילים, לפי משפט, ביטויים, טוקניזציה לפי מילת משנה ולפי מספר.
בשיחה על מודל AI (ה-LLM, כמו ChatGPT או Claude) משמש הטוקן לציון גודל השיחה על המודל והיקף המידע שיכול להיות בה. לכל מודל יש מגבלה של זיכרון התוכן שהוא יכול לעבד בשיחה אחת ולהתבסס עליו בתשובות שלו ובמהלך השיחה.
כל הטקסט שהמודל מכיל ובא מהקלט שמזרים לו המשתמש, כולל השאלות והתשובות וכל מידע נוסף, כל אלו מכונים "קונטקסט" (Context), כלומר "ההקשר".
חלון ההקשר (context window), או "חלון הקונטקסט", מייצג את כמות התוכן שהמודל יכול לעבד בשיחה עם משתמש. הכמות הזו נספרת בטוקנים. אם קלוד, למשל, תומך ב-200 אלף טוקנים, זה אומר שהשיחה יכולה לכלול כ-40 אלף מילים. אם לג'מיני של גוגל יש מיליון טוקנים, זה אומר פי 5 יותר מילים וגודל חלון הקונטקסט שלה, כלומר השיחות עם ג'מיני הוא של כ-2 ספרים ממוצעים.
טוקניזציה כפי שהיא נעשית בידי מדעני נתונים:
https://youtu.be/fNxaJsNG3-s
פרמטרים וטוקנים הם לא הכל במודלים:
https://youtu.be/a1nqXQMOCks
הסבר של Machine Learning Token באנגלית:
https://youtu.be/mnqXgojQCJI
וטוקניזציה באתרי אינטרנט שיכולה לשמש בהקשר אחר כאמצעי אבטחה:
https://youtu.be/Y7I4IDojhJk
מאסימוני הטלפונים ועד עולם אבטחת מערכות מחשוב, טוקן (Token), בעברית “אסימון”, הוא מושג המשתנה בהתאם להקשר שבו הוא מוזכר. אפילו בתוך עולם המחשבים יש למושג טוקן כמה שימושים.
בלמידת מכונה, אחת הזירות המרתקות של העידן המודרני והתחום בו פועלים המודלים הפופולריים של ימינו, כמו Claude או ChatGPT, לטוקנים יש משמעות אדירה.
אותם מודלים גדולים, LLMים, הם מודלים מתמטיים. כדי לבצע את המשימות שאנו מבקשים מהם, תוך כדי תקשורת איתם בשפה טבעית, כמו אנגלית, עברית וכדומה, הם משתמשים בתהליך שנקרא "טוקניזציה".
במרכז הטוקניזציה נעשה פילוח של הטקסטים שהמודלים הללו מקבלים כנתונים, כדאטה, ליחידות קטנות יותר, תרגום של חלקי המידע הקטנים למספרים, כשאת יחידות המידע הללו, שהומרו למספרים, הם ינתחו בהמשך.
כך, אחרי שמסתיימת הטוקניזציה, הם מייצרים מהמידע טוקנים, מספרים שכל אחד מהם מייצג פריט מידע קטן. ה"טוקן" משמש בהם בתפקיד "אסימון למידת המכונה", שמתאר באופן מתמטי את יחידות הטקסט הקטנות. אלה מעין יחידות מידה שהמודלים המוכרים יוצרים מהקונטקסט.
לאחר שסיימו להפוך את המידע לטוקנים, מרבית המודלים שאנו מכירים הטוקנים משמשים לייצוג של הטקסט, ביחידות קטנות שהמודל מעבד בצורה מתמטית.
כשאנו משתמשים בטוקנים, זה כדי לסייע למודל להבין את המבנה של הטקסט, כך שיוכל לבצע על פיו את החישובים שלו. טוקן אחד יכול להיות כל חלק ממילה בשפה הרגילה שלנו, או אפילו תו אחד.
כדי להבין ולהגיב לקלט, המודל משתמש בכמות מסוימת של טוקנים. וטוקן יכול להיות כל פיסת מידע, מתו בודד ועד מילה שלמה ולעתים גם יותר. יש שיטות שונות של טוקניזציה והבחירה ביניהן היא בהתאם לאלגוריתם בו משתמשים. יש שהאסימון הוא לפי תווים (Character tokenization), אסימון לפי מילים, לפי משפט, ביטויים, טוקניזציה לפי מילת משנה ולפי מספר.
בשיחה על מודל AI (ה-LLM, כמו ChatGPT או Claude) משמש הטוקן לציון גודל השיחה על המודל והיקף המידע שיכול להיות בה. לכל מודל יש מגבלה של זיכרון התוכן שהוא יכול לעבד בשיחה אחת ולהתבסס עליו בתשובות שלו ובמהלך השיחה.
כל הטקסט שהמודל מכיל ובא מהקלט שמזרים לו המשתמש, כולל השאלות והתשובות וכל מידע נוסף, כל אלו מכונים "קונטקסט" (Context), כלומר "ההקשר".
חלון ההקשר (context window), או "חלון הקונטקסט", מייצג את כמות התוכן שהמודל יכול לעבד בשיחה עם משתמש. הכמות הזו נספרת בטוקנים. אם קלוד, למשל, תומך ב-200 אלף טוקנים, זה אומר שהשיחה יכולה לכלול כ-40 אלף מילים. אם לג'מיני של גוגל יש מיליון טוקנים, זה אומר פי 5 יותר מילים וגודל חלון הקונטקסט שלה, כלומר השיחות עם ג'מיני הוא של כ-2 ספרים ממוצעים.
טוקניזציה כפי שהיא נעשית בידי מדעני נתונים:
https://youtu.be/fNxaJsNG3-s
פרמטרים וטוקנים הם לא הכל במודלים:
https://youtu.be/a1nqXQMOCks
הסבר של Machine Learning Token באנגלית:
https://youtu.be/mnqXgojQCJI
וטוקניזציה באתרי אינטרנט שיכולה לשמש בהקשר אחר כאמצעי אבטחה:
https://youtu.be/Y7I4IDojhJk
מה יהיה הווב הסמנטי?
הווב הסמנטי (Semantic web) הוא חזון לבסיס נתונים שיפעל כרשת ויכיל את קשרי המשמעויות שבין מרכיביו. הרעיון הוא לשפר את רשת האינטרנט שאנו מכירים כ-WWW, לרשת שתכיל מידע על כל סוג של קובץ המצוי בה. המידע הזה יאפשר שימוש יעיל ומתקדם מאד בתכנים שברשת. כל פריט מידע ברשת כזו יהיה מתויג, כך שהוא יסייע לרשת לסייע למשתמשים לקבל מידע מתאים ואיכותי, כשהם יזדקקו לו.
להוספת רכיבי המידע הנדרשים ליצירת רשת כזו ישתמשו בכלים כמו מטא-תגיות (META Tags), מעין תגיות-על שתפקידן לתאר את פריט המידע ונתוני-על (META data), שיתארו את הדפים והאתרים שברשת ויאפשרו לבסיס הנתונים "לדעת" עליהם דברים חשובים.
באופן מסוים אמורה לפעול הרשת הסמנטית הזו כמודל של המוח האנושי. הגולשים יידעו מראש לגבי אתרים איכותיים ומעניינים בשבילם ספציפית, כי הרשת הזו תדע מה הם אוהבים ובמה הם מתעניינים ויודעת לברור בשבילם את המתאים ביותר, מבין מה שהיא מכילה.
בזכות "הידע על הידע" שיוסיף הווב הסמנטי, יוכלו הגולשים גם להימנע מאתרים גרועים, סתמיים או לא מתאימים להם וכדומה.
אבל רשת עתידית שכזו תכיל גם "סוכני תוכנה", תוכנות מתקדמות שיפעלו ברשת כזו ברקע ויבצעו בה פעולות של איסוף וניתוח נתונים ומגוון משימות מורכבות וקשות, שלרוב מבוצעות על ידי בני אדם.
הסוכנים הממוחשבים הללו ימצאו ויאתרו כל הזמן קשרים ואסוציאציות בין פריטי המידע שנוספים אליה ויתייגו אותם. בצורה כזו ניתן יהיה להשתמש בהם בצורה חכמה. הנתונים ברשת כזו יוכלו להיות שימושיים ושיתופיים למגוון של צרכים, מתוכנות ועד לעסקים, מיזמים שונים.
את הרשת הסמנטית חזה ממציא רשת האינטרנט, טים ברנרס-לי. החזון שלו היה של רשת מידע שתאפשר למחשבים להבין את המשמעויות של הפרטים שהיא מכילה. הוא כתב עליה לראשונה בשנת 2001, ביחד עם עמיתיו, במאמר שפורסם במגזין "סיינטיפיק אמריקן".
בין הדוגמאות שנתן אז ברנרס-לי היו סוכנים ממוחשבים שינהלו את לוח הפגישות של המשתמש, באופן שלוקח בחשבון נתונים ממקורות שונים וידע שקיים ברשת. הוצעו גם תוכנת דואר חכמה שעוד בזמן כתיבת מייל מודיעה על חברים שנתקלו בנושא, שיתופי פעולה עסקיים אפשריים ועוד.
בשנת 2024 ניתן כבר לומר שהבינה המלאכותית הבשילה להציע את הווב הסמנטי וסוכנים חכמים, שזכו לכינוי "סוכני AI" עושים בדיוק את מה שתואר בתור הסוכנים הממוחשבים.
הנה הווב הסמנטי:
https://youtu.be/OGg8A2zfWKg
מייסד ויקיפדיה מסביר את המושג כמו שהוא מבין אותו:
https://youtu.be/MY4s8uuHmy0
ומונולוג ארוך והאמת גם די משעמם של טים ברנרס לי על הווב הסמנטי:
https://youtu.be/HeUrEh-nqtU
הווב הסמנטי (Semantic web) הוא חזון לבסיס נתונים שיפעל כרשת ויכיל את קשרי המשמעויות שבין מרכיביו. הרעיון הוא לשפר את רשת האינטרנט שאנו מכירים כ-WWW, לרשת שתכיל מידע על כל סוג של קובץ המצוי בה. המידע הזה יאפשר שימוש יעיל ומתקדם מאד בתכנים שברשת. כל פריט מידע ברשת כזו יהיה מתויג, כך שהוא יסייע לרשת לסייע למשתמשים לקבל מידע מתאים ואיכותי, כשהם יזדקקו לו.
להוספת רכיבי המידע הנדרשים ליצירת רשת כזו ישתמשו בכלים כמו מטא-תגיות (META Tags), מעין תגיות-על שתפקידן לתאר את פריט המידע ונתוני-על (META data), שיתארו את הדפים והאתרים שברשת ויאפשרו לבסיס הנתונים "לדעת" עליהם דברים חשובים.
באופן מסוים אמורה לפעול הרשת הסמנטית הזו כמודל של המוח האנושי. הגולשים יידעו מראש לגבי אתרים איכותיים ומעניינים בשבילם ספציפית, כי הרשת הזו תדע מה הם אוהבים ובמה הם מתעניינים ויודעת לברור בשבילם את המתאים ביותר, מבין מה שהיא מכילה.
בזכות "הידע על הידע" שיוסיף הווב הסמנטי, יוכלו הגולשים גם להימנע מאתרים גרועים, סתמיים או לא מתאימים להם וכדומה.
אבל רשת עתידית שכזו תכיל גם "סוכני תוכנה", תוכנות מתקדמות שיפעלו ברשת כזו ברקע ויבצעו בה פעולות של איסוף וניתוח נתונים ומגוון משימות מורכבות וקשות, שלרוב מבוצעות על ידי בני אדם.
הסוכנים הממוחשבים הללו ימצאו ויאתרו כל הזמן קשרים ואסוציאציות בין פריטי המידע שנוספים אליה ויתייגו אותם. בצורה כזו ניתן יהיה להשתמש בהם בצורה חכמה. הנתונים ברשת כזו יוכלו להיות שימושיים ושיתופיים למגוון של צרכים, מתוכנות ועד לעסקים, מיזמים שונים.
את הרשת הסמנטית חזה ממציא רשת האינטרנט, טים ברנרס-לי. החזון שלו היה של רשת מידע שתאפשר למחשבים להבין את המשמעויות של הפרטים שהיא מכילה. הוא כתב עליה לראשונה בשנת 2001, ביחד עם עמיתיו, במאמר שפורסם במגזין "סיינטיפיק אמריקן".
בין הדוגמאות שנתן אז ברנרס-לי היו סוכנים ממוחשבים שינהלו את לוח הפגישות של המשתמש, באופן שלוקח בחשבון נתונים ממקורות שונים וידע שקיים ברשת. הוצעו גם תוכנת דואר חכמה שעוד בזמן כתיבת מייל מודיעה על חברים שנתקלו בנושא, שיתופי פעולה עסקיים אפשריים ועוד.
בשנת 2024 ניתן כבר לומר שהבינה המלאכותית הבשילה להציע את הווב הסמנטי וסוכנים חכמים, שזכו לכינוי "סוכני AI" עושים בדיוק את מה שתואר בתור הסוכנים הממוחשבים.
הנה הווב הסמנטי:
https://youtu.be/OGg8A2zfWKg
מייסד ויקיפדיה מסביר את המושג כמו שהוא מבין אותו:
https://youtu.be/MY4s8uuHmy0
ומונולוג ארוך והאמת גם די משעמם של טים ברנרס לי על הווב הסמנטי:
https://youtu.be/HeUrEh-nqtU
סוכנים חכמים
מהו צ'אטבוט ואיך הוא מקדם טיפול אישי?
צ'אטבוט (Chatbot) הוא סוג של סייען חכם וממוחשב, שניתן לשוחח איתו בהתכתבות צ'אט, או במקרה של צ'אטבוט מתקדם יותר גם שיחה מבוססת דיבור.
כמובן שהצ'אטבוט הוא מערכת מבוססת AI (בינה מלאכותית, או אינטליגנציה מלאכותית) שמייצרת שיחה מלאכותית עם המשתמש - מבלי שבצד השני נמצא אדם אמיתי.
בעשור השני של המאה ה-21 הצ'אטבוט הלך ותפס את מקומו ברשת ובאפליקציות שונות והפך לדרך חדשה לחלוטין להשתמש באינטרנט. לקוחות מצאו את עצמם מנהלים התכתבות בצ'אט או שיחה אוטומטיות עם בוט, שנתן מענה מותאם אישית ושיפר את עצמו עם הזמן.
הצ'טבוט הבטיח לספק שירות לאורך כל שעות היממה, 24/7. הוא סימן הפחתה של המון מהעומס של שירות הלקוחות האנושי, חסך זמן למתעניינים וללקוחות שביקשו שירות וחסך לעסקים הרבה כסף.
התגלה שבוט AI ממוקד ואיכותי מסוגל להציע תגובות מהירות ומדויקות, מה שהוביל לשיפור ניכר בחוויית הלקוח ולעלייה בשביעות הרצון, אף שהיו לקוחות שהתעקשו לשוחח עם בן אדם, שהיה עמוס עכשיו פחות ולכן גם זמין להם הרבה יותר.
היתרונות של הצ'טבוט בטיפול אישי במשתמש ובלקוח היו עצומים. שולבו בו טכנולוגיות פרסונליזציה מתקדמות שהלכו והתפתחו, תוך גיוס הבינה המלאכותית לצרכי השיווק, המכירות והתמיכה.
רבים חזו שצ'אטבוטים עשויים להחליף חלק ניכר מהשימוש באתרי שירותים שונים ולייתר אותם בעתיד, מה שהתממש אבל חלקית.
בזמנו החליטה פייסבוק להשתמש בצ'אטבוטים בתוך שירות המסרים שלה מסנג'ר. היא אפשרה למפתחים חיצוניים לפתח צ'אטבוטים שיתנו שירותים ומידע מאתרים אחרים. ההכרזה על פלטפורמת הצ'אט בוט של פייסבוק מסנג'ר קדמה את רעיון הצ'אטבוטים המקוונים באופן משמעותי, במיוחד למשתמש הנייד בסמארטפונים ושעונים חכמים, אם כי הזינוק הטרנדי שנוצר עם ההשקה הלך ונרגע עם הזמן.
ההבשלה של אותם צ'אטבוטים באה בעשור הבא דווקא. זה קרה עם הגעתו של סוכן AI, צ'אטבוט שממלא משימות עבורך, על ידי שילוב בין היכולת הבינתית של מודל שפה גדול (LLM), כמו ChatGPT או Claude, עם היכולת של רכיב תוכנה שיכול לפעול באופן עצמאי וממוקד.
אותם סוכני AI הם רכיבי תוכנה אוטונומיים, יישומים מבוססי בינה מלאכותית, המסוגלים לתפוס את סביבתם, לקבל החלטות ולפעול להשגת מטרות ממוקדות בשירות המשתמש. הכירו אותם בתגית "סוכני AI".
כלומר, אם הצ'טבוט של העשור שהחל ב-2010 היה עובד חרוץ אך לא חכם מדי, הצ'טבוט של העשור שאחריו רכש השכלה ופיתח את יכולותיו האינטליגנטיות באופן שהפך אותו לעובד מבריק, מיומן בעבודתו וחרוץ כתמיד.
עסקה טובה לרובנו.
פעילות נחמדה
============
בקישורים שלמטה יש לינק לצ'ט בוט נהדר. נסו לשוחח איתה (באנגלית) ולהכיר קצת את חוויית השיחה עם צ'ט בוט אופייני.
הנה עולם הצ'אטבוט:
http://youtu.be/iE9LtfQAYYU
עוד על השימוש בצ'אטבוטים ברשת:
http://youtu.be/G8z--x5tFOI
ההכרזה על הצ'אט בוט במסנג'ר של פייסבוק:
http://youtu.be/EOYnFUJyOlQ
ומנגד - כשהושק הצ'אטבוט של מיקרוסופט הוא "הסתבך" עם ביטויי גזענות קשים:
http://youtu.be/LA49GBcbudg
צ'אטבוט (Chatbot) הוא סוג של סייען חכם וממוחשב, שניתן לשוחח איתו בהתכתבות צ'אט, או במקרה של צ'אטבוט מתקדם יותר גם שיחה מבוססת דיבור.
כמובן שהצ'אטבוט הוא מערכת מבוססת AI (בינה מלאכותית, או אינטליגנציה מלאכותית) שמייצרת שיחה מלאכותית עם המשתמש - מבלי שבצד השני נמצא אדם אמיתי.
בעשור השני של המאה ה-21 הצ'אטבוט הלך ותפס את מקומו ברשת ובאפליקציות שונות והפך לדרך חדשה לחלוטין להשתמש באינטרנט. לקוחות מצאו את עצמם מנהלים התכתבות בצ'אט או שיחה אוטומטיות עם בוט, שנתן מענה מותאם אישית ושיפר את עצמו עם הזמן.
הצ'טבוט הבטיח לספק שירות לאורך כל שעות היממה, 24/7. הוא סימן הפחתה של המון מהעומס של שירות הלקוחות האנושי, חסך זמן למתעניינים וללקוחות שביקשו שירות וחסך לעסקים הרבה כסף.
התגלה שבוט AI ממוקד ואיכותי מסוגל להציע תגובות מהירות ומדויקות, מה שהוביל לשיפור ניכר בחוויית הלקוח ולעלייה בשביעות הרצון, אף שהיו לקוחות שהתעקשו לשוחח עם בן אדם, שהיה עמוס עכשיו פחות ולכן גם זמין להם הרבה יותר.
היתרונות של הצ'טבוט בטיפול אישי במשתמש ובלקוח היו עצומים. שולבו בו טכנולוגיות פרסונליזציה מתקדמות שהלכו והתפתחו, תוך גיוס הבינה המלאכותית לצרכי השיווק, המכירות והתמיכה.
רבים חזו שצ'אטבוטים עשויים להחליף חלק ניכר מהשימוש באתרי שירותים שונים ולייתר אותם בעתיד, מה שהתממש אבל חלקית.
בזמנו החליטה פייסבוק להשתמש בצ'אטבוטים בתוך שירות המסרים שלה מסנג'ר. היא אפשרה למפתחים חיצוניים לפתח צ'אטבוטים שיתנו שירותים ומידע מאתרים אחרים. ההכרזה על פלטפורמת הצ'אט בוט של פייסבוק מסנג'ר קדמה את רעיון הצ'אטבוטים המקוונים באופן משמעותי, במיוחד למשתמש הנייד בסמארטפונים ושעונים חכמים, אם כי הזינוק הטרנדי שנוצר עם ההשקה הלך ונרגע עם הזמן.
ההבשלה של אותם צ'אטבוטים באה בעשור הבא דווקא. זה קרה עם הגעתו של סוכן AI, צ'אטבוט שממלא משימות עבורך, על ידי שילוב בין היכולת הבינתית של מודל שפה גדול (LLM), כמו ChatGPT או Claude, עם היכולת של רכיב תוכנה שיכול לפעול באופן עצמאי וממוקד.
אותם סוכני AI הם רכיבי תוכנה אוטונומיים, יישומים מבוססי בינה מלאכותית, המסוגלים לתפוס את סביבתם, לקבל החלטות ולפעול להשגת מטרות ממוקדות בשירות המשתמש. הכירו אותם בתגית "סוכני AI".
כלומר, אם הצ'טבוט של העשור שהחל ב-2010 היה עובד חרוץ אך לא חכם מדי, הצ'טבוט של העשור שאחריו רכש השכלה ופיתח את יכולותיו האינטליגנטיות באופן שהפך אותו לעובד מבריק, מיומן בעבודתו וחרוץ כתמיד.
עסקה טובה לרובנו.
פעילות נחמדה
============
בקישורים שלמטה יש לינק לצ'ט בוט נהדר. נסו לשוחח איתה (באנגלית) ולהכיר קצת את חוויית השיחה עם צ'ט בוט אופייני.
הנה עולם הצ'אטבוט:
http://youtu.be/iE9LtfQAYYU
עוד על השימוש בצ'אטבוטים ברשת:
http://youtu.be/G8z--x5tFOI
ההכרזה על הצ'אט בוט במסנג'ר של פייסבוק:
http://youtu.be/EOYnFUJyOlQ
ומנגד - כשהושק הצ'אטבוט של מיקרוסופט הוא "הסתבך" עם ביטויי גזענות קשים:
http://youtu.be/LA49GBcbudg