» «
מודל שפה גדול
מהם מודלי שפה גדולים, או LLM?



מודל שפה גדול (LLM), קיצור של Large Language Model, הוא ה"מוח" שמפעיל צ'אטבוט עוצמתי, כמו הצ'אטבוט ChatGPT, המייצר תוכן לבקשת המשתמשים ועושה זאת באמצעות מודל השפה הגדול GPT-4 ואחרים.

את התוכן מייצר הצ'אטבוט מדאטה עצום, כמות מידע אדירה שנשאבה מהאינטרנט ובאמצעותה אימנו את מודל השפה שמפעיל אותו. מודלי השפה GPT-3 ו-GPT-4, למשל, הם שמפעילים את הצ'אטבוט הכי מפורסם ChatGPT.

יש שאומרים שמודל השפה בעצם הוא לא יותר ממחולל מילים סטטיסטי. הם צודקים אבל גם טועים. כי מודל שפה יכול לחשב מצוין הסתברות של הופעת מילים שונות בכל משפט וכך לייצר משפטים חדשים, מילה אחר מילה, בשפה שבה הוא אומן על ידי המפתחים שלו. אבל זו דוגמה בלבד ואפילו קצת מטעה. כי סטטיסטיקה זה לא הכל וכנראה לא לגמרי המהות של העניין. המוח של מודל השפה, האופן שבו הוא בנוי והתובנות והביצועים שהוא יכול לנפק, הם משמעותיים הרבה יותר.

מודל כזה הוא תת-תחום של למידה עמוקה ומבוסס על רשת עצבית מלאכותית הבנויה בצורה דומה למוח האנושי. הרשת הזו היא בעלת כמות אדירה של פרמטרים, לרוב מיליארדים. הפרמטרים הללו הם ערכים מספריים שמסייעים לאלגוריתם ללמוד.

עוד ביטוי לגודלו הגדול של המודל הוא באימון שלו על מאות מיליוני מילים, בכמויות ענק של טקסט לא מתויג, בשיטת למידה שאינה מסתמכת רק על דוגמאות אנושיות, או מה שנקרא "למידה בפיקוח-עצמי".


#איך זה בדיוק עובד?
נניח ששאלתם שאלה, מודל השפה הגדול מניח את נוסח השאלה על שולחן הטיפולים שלו ובודק בדאטה שלו, במידע העצום שהוא אגר והמיר לקוד מתמטי (ראו אח"כ בתגית" טוקנים"), מה המילה שהכי סביר (מבחינת הסתברות) שתתחיל את התשובה. ואז הוא בודק מה המילה עם ההסתברות הכי גבוהה להופיע אחריה וכך הלאה. זה ייתן לו את התשובה הסבירה ביותר לשאלה.

למה הכי סבירה ולא הכי טובה? - כי הסתברות היא לעולם לא מושלמת וזו בדיוק הסיבה להזיות שנקבל לא פעם ממנועי בינה מלאכותית. אגב, אם תבקשו ממנו לבדוק את תשובתו, כל LLM ימצא ויפרט את שגיאותיו וגם יציע לתקן את המענה שנתן ובתיקון זה כבר יהיה הרבה יותר טוב.

ה-LLM משתמש בייצוג מתמטי של שפה טבעית באמצעות הסתברויות. כל מדען נתונים יאשר שהבסיס של מודלי שפה הוא היכולת שלהם לחשב הסתברות לכל משפט בשפה שבה הם אומנו ומהיכולת הזו נובע חלק משמעותי ביכולת שלהם לייצר משפטים חדשים, מילה אחר מילה.


#מודלי השפה הגדולים והבינה הג'נרטיבית
מודל השפה הגדול הוא בעצם הבסיס למהפכת הבינה הגנרטיבית שפרצה לחיינו בשלהי 2022-תחילת 23. מודלי השפה הגדולים הללו מסמנים קפיצת דרך של ממש ולמעשה הכניסו אותנו עמוק אל תוך העתיד.

הייתה זו IBM שפיתחה את אחד ממודלי השפה הראשונים. הוא נקרא ווטסון, על שם תומאס ווטסון, מייסד IBM. יש גרסה שאומרת שהוא קיבל את שמו משמו משם העוזר של שרלוק הולמס, ווטסון. מודל כזה, ממש כמו אותו עוזר, תמיד מסייע בחקר ובתשובות שונות, כיום של רבים ואצל שרלוק, לצרכי החקירות של הבלש הנודע.

מצוידים במודלים החדשים, הצ'אטבוטים המרשימים, כמו Claude ו-ChatGPT, מסרבים להיות לכם לווטסון. במקום זאת הם מפותחים כך שיהיו המוח, כלומר השרלוק שלכם, כשאתם וכמה זה אירוני, בתפקיד הווטסון או העוזר שלהם... אבל גם הלקוחות.

מודל שפה הוא שמאפשר לנו לבקש ממנו לסכם טקסטים, לענות על שאלות, לצייר או בעצם לייצר תמונות ו"צילומים", לחבר שירים, ליצור סרטונים או לכתוב קוד.

אז מודלי שפה גדולים אפשרו את קפיצת הדרך המדהימה של מהפכת ה-AI. אמנם הם רחוקים מלהיות מושלמים לחלוטין ועדיין פה ושם מקלקלים את ההתפעלות עם ההזיות המוכרות האלה שלהם, עובדות שגויות, מידע לא רלוונטי או מופרך ואפילו עלבונות נדירים. ומה שלא פחות מרגיז לעתים הוא הביטחון המלא שבו הם כותבים או מדברים אותן, שזה בדיוק מה שהופך את חשיפת ההזיות ובדיות הללו לכל כך קשה ומסוכנת...

כיום, המודלים הללו הולכים ומאפשרים צמיחה של עולם חדש, עולם סוכני ה-AI. הם ממוקדים בביצוע משימות ספציפיות, תגובה לסביבה ועוד תכונות מבטיחות. הכירו אותם בתגית "סוכני AI".


הנה מה שעושים המודלים, מנועי השפה הגדולים (מתורגם):

https://youtu.be/X-AWdfSFCHQ


כך פורצת מלחמת עולם ה-AI הראשונה:

https://youtu.be/nJjuYTpHQEE


מהו LLM?

https://youtu.be/iR2O2GPbB0E


המודל השולט בינואר 2025 - DeepSeek R1 הסיני:

https://youtu.be/hupQ97Or3jw


השוואת הצ'טבוטים הטובים, מנועי השפה הגדולים בסוף 2024 (עברית):

https://youtu.be/NanvGTQeO-g


כך פועל מודל השפה הגדול LLM:

https://youtu.be/iR2O2GPbB0E


כך בנויים ופועלים מודלי השפה הגדולים:

https://youtu.be/5sLYAQS9sWQ


יש להם גם חסרונות:

https://youtu.be/Gf_sgim24pI


הסבר מעמיק על מודלים גדולים של שפה ומה שהם הובילו (עברית):

https://youtu.be/-NIsUKUnxhA?long=yes


ובאופן סטטיסטי - כך פועל LLM:

https://youtu.be/LPZh9BOjkQs?long=yes
LoRA
מה זה LoRA ב-AI ולמה היא משמשת?



LoRA, ובעברית לורה (Low-Rank Adaptation) היא טכניקה בעולם ה-GenAI, העולם של הבינה המלאכותית היוצרת. היא מאפשרת כוונון עדין (fine-tuning) של מודלים גדולים (LLMs) וכלליים מדי, להתאמה של מודלים קיימים לצרכים ספציפיים בצורה יעילה וחסכונית במשאבים.

מפני שההסבר הטכני הזה כנראה לא מובן מדי, נסביר את הלורה באמצעות דוגמה פשוטה:

נניח שיש לנו מודל AI שיודע לג'נרט (generate), כלומר לצייר בבינה מלאכותית. אנחנו רוצים שהוא ייצר דמויות בסגנון אנימה או דמות מסוימת, שמשום מה הוא אינו מכיר, כי היא לא הייתה בדאטה שהוא אומן עליו.

לכן, במקום לבקש שיאמנו את המנוע, או המודל הגדול, מחדש על המון ציורי אנימה, או להמתין בסבלנות מתסכלת עד שיום אחד הוא כן יכיר את הסגנון או הדמות הספציפית, נשתמש בטכניקה שונה. טכניקת הלורה.

ב-LoRA, כדי ללמד את המודל על הסגנון הזה או על הדמות המסוימת שאנחנו רוצים, מאפשרים לנו לאמן אותו בעצמנו, בעזרת דוגמאות בודדות ש"נראה לו", כלומר נטען אליו ב-Upload.

השיטה היעילה הזו לכוונון עדין של מערכות AI, מתאימה במיוחד ליצירת תמונות ריאליסטיות, למשל, להתאמה של סגנונות עיצוביים או ליצירת דמויות עקביות בפרויקטים גרפיים, תוך שימוש בכמות קטנה יחסית של נתוני אימון.

כך נוכל ליצור, למשל את אותה דמות מדויקת, בסצנות שונות של סרטון שמייצר ה-AI או בציורי קומיקס רציפים שנוצרים כך.

כלומר,ה-LoRA נועדה להוסיף שכבת משקולות חדשה למודל המקורי, מבלי לשנות אותו, תוך כדי קיצור של זמן האימון ושיפור של הגמישות שלו.

ואגב, השיטה עובדת עבור כל רשת עצבית ולא רק עבור מודלי שפה גדולים LLMs (קראו עליהם בתגית "LLM").


הנה הסבר של רעיון ה-LoRA:

https://youtu.be/lixMONUAjfs


כך יוצרים LoRA במערכת ספציפית:

https://youtu.be/HfwFgkFCtpM


ויצירת לורה של דמות מוכרת:

https://youtu.be/KEv-F5UkhxU?long=yes
מולטי מודאליות
מהי מולטי מודאליות בעולם ה-AI?



זה אחד הפיתוחים המרגשים של עידן הבינה החדש ומה שמרגיש לא פעם כמו סרטי מד"ב מהיותר מתוחכמים. קוראים לזה מולטי-מודאליות (Multimodality) והוא בעצם היכולת של כלי AI לעבוד עם סוגי נתונים שונים, כמו טקסט, אודיו, קוד, וידאו ותמונות - גם כקלט וגם כפלט.

במקום להתמקד בסוג אחד בלבד של נתונים, מערכת רב-מודאלית מקבלת ומנתחת מידע ממקורות מגוונים, בכדי לקבל הבנה מעמיקה יותר של העולם הסובב אותה. מדובר בכלי ממוחשב שבדיוק כמו שבני אדם חווים את העולם דרך כל החושים והחוויות, לא רק מבין טקסט, אלא גם רואה תמונות וסרטים, מעבד ומנתח וידאו, מגלה הבנה מרחבית, שומע קולות וצלילים, מפענח קוד של תוכנה ומסוגל גם ליצור תכנים ותוצרים בכל המדיות הללו.

בדומה למוח האנושי, המשלב בטבעיות מידע מכל החושים, העולם של המערכות המולטי מודאליות ב-generative AI מציג יכולת שהיא עוד רכיב במהפכה הגדולה של מערכות בינה מלאכותית, מהפכונת שמאפשרת לעבד ולשלב כמה סוגי מדיה במקביל.

המערכות החדשות הללו מצוידות בשכבות מורכבות של פענוח ומפענחות את העולם פחות או יותר כמו מחשב-על. דוגמאות לא חסר. למשל עם צ'טבוט שבזכות ההבנה המרחבית המשופרת שלו מסוגל לזהות ולהוסיף כיתוב מדויק לעצמים שונים בתמונות עמוסות פריטים. או צ'טבוט שמנתח תמונות ומאפשר למשתמש לנהל עליהן דיון, או סוקר אינפוגרפיקה ונותן לה פרשנות קולית רלוונטית, בהתאם לרמת ההבנה של המשתמש או קהל היעד המבוקש. לכלי כזה יש גם כלי וידאו שמקבלים תמונה והנחייה כתובה (פרומפט) ומנפישים את התמונה לקליפ וידאו שכמו צולם בידי צוות צילום הוליוודי.

דוגמה נוספת היא כלי אינטראקציה רב-מודאלי כמו NotebookLM. הוא מאפשר למשתמשים לשתף איתו את המסך או המצלמה שלהם בזמן אמת. כך ניתן לקיים שיחות קוליות דמויות אדם, תוך כדי שמאפשרים ל-AI לצפות במסך ולעזור, תוך כדי מודעות להקשר ולתוכן.

אפילו תכונת זיהוי הפנים בסמארטפון שלכם היא תכונה שמשלבת היטב ראייה ממוחשבת, מיפוי תלת-ממדי ועיבוד נתונים מתקדם. ומאלה היא יוצרת פיצ'ר מדהים, בצד חווית משתמש פשטותה כמו מבט של שומר אנושי.

שילוב של צורות נתונים מרובות, כמו טקסט, תמונות ואודיו לתוך מערכת מאוחדת ורב-מודאלית היא שמאפשרת למודלים כמו Claude או GPT-4 לכתוב קוד כשמזינים לתוכו דיאגרמה ולמודלים שונים ליצור תמונות או סרטוני וידאו עם תיאורים.

את המהפכה המולטימודאלית אפשר לזהות בקלות בפלטפורמות כמו טיקטוק (TikTok) ואינסטגרם (Instagram), בהן משלבים סוגי מדיה מגוונים ומעבדים במגוון כלים, המשנים את הדרך בה אנו מספרים את הסיפור שלנו לעולם.


הנה הסבר היכולת המולטי-מודאלית:

https://youtu.be/97n1u66Shgg


כך עובדים מערכות מולטי מודאליות:

https://youtu.be/WkoytlA3MoQ


וההיפר מודאליות החדשה של גוגל מארינר:

https://youtu.be/KeUMm1xF3o0?long=yes
טוקנים
מהם טוקנים ב-AI ולמידת מכונה?



מאסימוני הטלפונים ועד עולם אבטחת מערכות מחשוב, טוקן (Token), בעברית “אסימון”, הוא מושג המשתנה בהתאם להקשר שבו הוא מוזכר. אפילו בתוך עולם המחשבים יש למושג טוקן כמה שימושים.

בלמידת מכונה, אחת הזירות המרתקות של העידן המודרני והתחום בו פועלים מודלי השפה הפופולריים של ימינו, כמו Claude או ChatGPT, לטוקנים יש משמעות אדירה.

אותם מודלים גדולים, LLMs, הם מודלים מתמטיים. כדי לבצע את המשימות שאנו מבקשים מהם, תוך כדי תקשורת איתם בשפה טבעית, כמו אנגלית, עברית וכדומה, הם משתמשים בתהליך שנקרא "טוקניזציה" (Tokenization).

במרכז הטוקניזציה נעשה פילוח של הטקסטים שהמודלים הללו מקבלים כנתונים, כדאטה, ליחידות קטנות יותר, תרגום של חלקי המידע הקטנים למספרים, כשאת יחידות המידע הללו, שהומרו למספרים, הם ינתחו בהמשך.

כך, אחרי שמסתיימת הטוקניזציה, הם מייצרים מהמידע טוקנים, מספרים שכל אחד מהם מייצג פריט מידע קטן. ה"טוקן" משמש בהם בתפקיד "אסימון למידת המכונה", שמתאר באופן מתמטי את יחידות הטקסט הקטנות. אלה מעין יחידות מידה שהמודלים המוכרים יוצרים מהקונטקסט.

לאחר שסיימו להפוך את המידע לטוקנים, מרבית המודלים שאנו מכירים הטוקנים משמשים לייצוג של הטקסט, ביחידות קטנות שהמודל מעבד בצורה מתמטית.

כשאנו משתמשים בטוקנים, זה כדי לסייע למודל להבין את המבנה של הטקסט, כך שיוכל לבצע על פיו את החישובים שלו. טוקן אחד יכול להיות כל חלק ממילה בשפה הרגילה שלנו, או אפילו תו אחד.

כדי להבין ולהגיב לקלט, המודל משתמש בכמות מסוימת של טוקנים. וטוקן יכול להיות כל פיסת מידע, מתו בודד ועד מילה שלמה ולעתים גם יותר. יש שיטות שונות של טוקניזציה והבחירה ביניהן היא בהתאם לאלגוריתם בו משתמשים. יש שהאסימון הוא לפי תווים (Character tokenization), אסימון לפי מילים, לפי משפט, ביטויים, טוקניזציה לפי מילת משנה ולפי מספר.

בשיחה על מודל AI (ה-LLM, כמו ChatGPT או Claude) משמש הטוקן לציון גודל השיחה על המודל והיקף המידע שיכול להיות בה. לכל מודל יש מגבלה של זיכרון התוכן שהוא יכול לעבד בשיחה אחת ולהתבסס עליו בתשובות שלו ובמהלך השיחה.

כל הטקסט שהמודל מכיל ובא מהקלט שמזרים לו המשתמש, כולל השאלות והתשובות וכל מידע נוסף, כל אלו מכונים "קונטקסט" (Context), כלומר "ההקשר".

חלון ההקשר (context window), או "חלון הקונטקסט", מייצג את כמות התוכן שהמודל יכול לעבד בשיחה עם משתמש. הכמות הזו נספרת בטוקנים. אם קלוד, למשל, תומך ב-200 אלף טוקנים, זה אומר שהשיחה יכולה לכלול כ-40 אלף מילים. אם לג'מיני של גוגל יש מיליון טוקנים, זה אומר פי 5 יותר מילים וגודל חלון הקונטקסט שלה, כלומר השיחות עם ג'מיני הוא של כ-2 ספרים ממוצעים.


טוקניזציה כפי שהיא נעשית בידי מדעני נתונים:

https://youtu.be/fNxaJsNG3-s


פרמטרים וטוקנים הם לא הכל במודלים:

https://youtu.be/a1nqXQMOCks


הסבר של Machine Learning Token באנגלית:

https://youtu.be/mnqXgojQCJI


וטוקניזציה באתרי אינטרנט שיכולה לשמש בהקשר אחר כאמצעי אבטחה:

https://youtu.be/Y7I4IDojhJk

מודלים של בינה

מודל היגיון
מהו מודל היגיון, או Reasoning Model?



מודל היגיון (Reasoning Model) הוא מודל שנועד לחקות את תהליך החשיבה האנושית ולהסיק מסקנות לוגיות על בסיס מידע נתון. בדרך לתת תשובה הוא מחלק את פתרון הבעיה לשלבים ומבצע חשיבה מתמשכת ומבוססת יותר מהרגיל של מודל שפה.

מודל הגיון כזה מתאים מאוד לפתרון ברמת דוקטור (PhD) של בעיות מורכבות - בעיות מתמטיות, מדעיות ושל כתיבת קוד מורכב. ואגב, הוא גם דורש כוח מחשוב משמעותי מהרגיל, לפחות במקרה של מודל ChatGPT 4o1 של OpenAI וקצת פחות במודל המבריק והחדשני DeepSeek, שפותח בסין בגרושים ומראה תוצאות מדהימות.

כי מודל היגיון, הוא מודל מנומק, שמשתמש בהיגיון כדי "לחשוב דרך" הבעיה ולהיות מסוגל גם להראות את תהליך החשיבה שביצע, לפני שנותן את התוצאות. זאת בניגוד למודלים הרגילים שמבצעים אופטימיזציה סבירה, רק כדי שיוכלו לספק את התשובה המהירה ביותר (שזה מה שגם גורם לא פעם למודל שפה רגיל לתרום לנו בדרך את ה"הזיות", אותן Halucinations המוכרות לנו כל כך).

בקיצור, אם מודל שפה רגיל הוא הבחור הטקסטואלי שהוא אלוף על טקסטים ועונה מהר, מודל ההיגיון הוא הנערה המבריקה והריאלית, שיכולה לפצח בעיות מופשטות, מתמטיות, פיזיקליות ומדעיות בתחומים מדויקים, בלי למצמץ ועם יכולת לנמק ולהסביר את הפתרון שאליו היא מגיעה, צעד אחר צעד.

מודל כזה מבצע לעתים קרובות "שרשרת מחשבה" (Chain of Thought) ולכן גם מכונה כך לפעמים. המודל חושב צעד אחר צעד, בצורה שמזכירה את האופן שבו אנו, בני האדם, עשויים לגשת לאתגר משמעותי יותר כמו תכנון חופשה או בניית בית.

משמעותו של מודל כזה היא ביכולת שלו לספק תשובות מדויקות ומושכלות לשאלות מורכבות, לפתור בעיות ולקבל החלטות מבוססות נתונים. לכן וכדי להצטיין בבעיות מסובכות יותר, מומלץ להזין אותו בכמה שיותר הקשר, קונטקסט (Context) לגבי הנושא והגישה לפתרון.

וכמובן שמודלי היגיון משתמשים בטכניקות של בינה מלאכותית ולמידת מכונה כדי לנתח נתונים, לזהות דפוסים ולהסיק מסקנות מבוססות עובדות.


#במה הם יכולים לעזור לנו?
מודלים כאלו יכולים לנתח כמויות גדולות של נתונים במהירות ובדיוק, לזהות דפוסים ולהסיק מסקנות. הם יכולים לפתור בעיות מורכבות על ידי שימוש בלוגיקה ובאלגוריתמים מתקדמים.

ביכולתם גם לסייע בקבלת החלטות מבוססות נתונים, מה שיכול להיות מועיל בתחומים כמו רפואה, כלכלה וניהול. בנוסף, הם יכולים להסיק מסקנות לוגיות על בסיס הנתונים שנתונים להם, מה שיכול לסייע בתחזיות ובתכנון.

מודלי ההיגיון יכולים לחסוך זמן ומאמץ בביצוע משימות מורכבות, מה שמאפשר למשתמשים להתמקד בפעילויות אחרות. ביכולתם לספק תשובות מדויקות ומבוססות עובדות, מה שיכול להיות מועיל בתחומים כמו רפואה, משפטים והנדסה.

מודלים אלו מסייעים בקלות בקבלת החלטות מושכלות ומבוססות נתונים, מה שיכול להיות מועיל בחיי היומיום ובעבודה והם יכולים גם לסייע בפתרון בעיות מורכבות במהירות וביעילות, מה שיכול להיות מועיל בתחומים רבים.

ברפואה, מודלי היגיון יכולים לסייע באבחון מחלות ובמתן המלצות לטיפול על בסיס נתונים רפואיים.

בכלכלה, ניתן להסתייע בהם בניתוח שוק ההשקעות ובקבלת החלטות כלכליות מבוססות נתונים.

בחינוך, המודלים הללו יכולים לסייע בהוראה ובלמידה על ידי סיפוק הסברים מדויקים ומושכלים לשאלות מורכבות.

בניהול, הם מעולים הסיוע לניהול משאבים מוצלח ובקבלת החלטות ניהוליות מבוססות נתונים.

אז אם לסכם, מודל היגיון הוא כלי חזק שיכול לסייע במגוון רחב של תחומים ולשפר את איכות החיים של המשתמשים, על ידי סיפוק תשובות מדויקות ומבוססות עובדות. עם יכולותיו הוא מאפשר לנתח נתונים במהירות, לפתור בעיות מורכבות ולקבל החלטות מבוססות נתונים, מה שהופך אותו לאחד הכלים החיוניים ביותר בדור החדש של העידן הדיגיטלי מבוסס הבינה המלאכותית.


הנה מודל ההגיון הסיני Deepseek R1 שיודע לחשוב מראש, לתכנן, להשוות כמה תשובות אפשריות, לפרק את הבעיה לחלקים, לחזור אחורה ולחשוב מחדש על השאלה וכך לענות היטב על שאלות קשות, מורכבות ועד לא מזמן בלתי אפשריות למודל שפה:

https://youtu.be/-2k1rcRzsLA


דוגמה לבעיות פשוטות מהחיים שמודל מנומק יכול לפתור:

https://youtu.be/yQampjl6gPI


שניים כאלה:

https://youtu.be/rzMEieMXYFA


ו-DeepSeek R1 הוא מודל מנומק בקוד פתוח:

https://youtu.be/yT3KGbiA09Q
מודל היגיון
מה בין מודל היגיון, מולטי מודאליות ו-Chain of Thought?



בעולם המתהווה ממש לנגד עינינו יש לעתים בלבול בין טכנולוגיות, מושגים ורעיונות שונים. הבה נבהיר את ההבדלים ביניהם:

#מולטי מודאליות (Multimodal Model)
זוהי תכונה של מודל שפה שיכול לקבל סוגי קלט שונים ולהתייחס אליהם, במקום רק טקסט, כמו מודלי השפה הרגילים או הראשונים שהכרנו בהתחלה. הרעיון במודלים מולטי-מודאליים כאלו הוא שהם משלבים כמה סוגי נתונים או מודאלים, כולל טקסט, תמונות, הקלטות, אולי סרטונים וכדומה.

דוגמה לכך היא מודל ה-Multimodal Chain-of-Thought (CoT), שמציע גישה בה המודל משתמש בשני שלבים: הראשון הוא יצירת רציונלים, הסברים, והשלב השני של הסקת תשובות. השילוב של מידע טקסטואלי עם מידע חזותי מאפשר למודלים אלו לשפר את ביצועיהם ולצמצם את כמות ה"הזיות" (hallucinations) בתשובותיהם. פירוט בתגית "מולטי מודאליות".


#מודל היגיון (Reasoning Model)
מודל היגיון הוא מודל שנועד לחקות את תהליך החשיבה האנושית. הוא מתמקד בהסקת מסקנות לוגיות על בסיס מידע נתון, ולא רק בהפקת תשובות מהירות.

מודלים אלו מבצעים לעיתים קרובות "שרשרת מחשבה" (Chain of Thought), כלומר הם חושבים צעד אחר צעד כדי לפתור בעיות מורכבות, כמו בעיות מתמטיות או מדעיות. זה מאפשר להם להסביר את הפתרונות שלהם בצורה ברורה ומדויקת יותר. פירוט בתגית "מודל היגיון".


#שרשרת מחשבה (Chain of Thought)
ה-Chain of Thought ובקיצור CoT, הוא טכניקת הפעלת מודלים שבה המודל מונחה לפרק בעיה סבוכה ומורכבת ולייצר רצף של צעדי חשיבה קטנים, לפני שהוא מספק תשובה.

שיטה זו, המחקה את דרך הפעולה האנושית, שיפרה את יכולות ההיגיון של מודלים גדולים והוכחה כיעילה בביצוע משימות שונות כמו חישובים, רציונליזציה של מצבים יומיומיים, ופתרון בעיות סימבוליות.

המודל מתבסס על דוגמאות קודמות כדי להנחות את החשיבה שלו, מה שמוביל לשיפור משמעותי בביצועים. פירוט בתגית "שרשרת מחשבה".


אז נסכם שמולטי מודאליטי או מולטי מודאליות משלבת סוגי נתונים או קלט שונים ולא רק טקסט ובכך משפרת ביצועים. מודל היגיון, בסמוך, מחקה את החשיבה האנושית ומספק הסברים לוגיים לתשובות שהוא נותן, בעוד שחשיבה מדורגת, או שרשרת מחשבה, היא טכניקה שמסייעת ומנחה מודלים לחשוב על בעיות בצורה מסודרת, לפני שהם נותנים את התשובה.

שלושת המושגים הללו קשורים זה בזה, כי מודלי ההיגיון יכולים להשתמש בטכניקות של חשיבה מודרגת (Chain of Thought) ולא פעם משולבים בהם אמצעים מולטי-מודאליים כדי לנצל את היתרונות של כל אחד מהם.
בינה מלאכותית כללית
מהי בינה מלאכותית כללית או AGI?



בינה מלאכותית כללית (AGI), באנגלית Artificial General Intelligence, משמעותה בפשטות היא בינת-על. בינה מלאכותית שלא יודעת לעשות רק דבר אחד, או בתחום אחד, אלא כזו שיודעת לעשות הכל.

היא נקראת גם בינה מלאכותית חזקה, בניגוד לבינה מלאכותית צרה, חלשה, המיועדת ומתוכנתת למשימות ספציפיות, הבינה הכללית המלאכותית היא סופר-אינטליגנציה, שאינה מוגבלת בתחום או במיומנות ספציפית, אלא בינה מאוד חכמה, מבריקה, גאונה.

דמיינו AGI בתור הגאון של החברה, אדם חכם ונבון מאוד, או בעצם המון כאלו. היא תהיה מצוידת בכל החושים ויכולות הקוגניציה שיש לאדם, כולל שמיעה, ראייה, הבנה של הקשרים, יכולת לפענח התנהגות, חשיבה יצירתית וכדומה.

בקיצור, ה-AGI היא מאסטר מיינד גאוני, כלי ממוחשב שיהיה כה מבריק ומתוחכם, עד שיעקוף את האדם בבינה שלו ומן הסתם את האדם הכי חכם שאתם מכירים, או את כל הכי חכמים (אולי בעולם) יחדיו.

אם בעבר היה פיתוח AGI מושג מופשט ומטרת מחקר תיאורטית, בשנת 2020 העריכו בקבוצות בינה מתקדמות שייקח עוד 50 שנה עד שתגיע בינה מלאכותית ג'נרליסטית שכזו. ההערכה כיום, באפריל 2024, היא שבין 2026 ל-2027 תהיה הבינה המלאכותית הכללית בשוק.

לא יאומן? - התרגלתם. אנחנו חיים בעתיד...

כל חברות הטכנולוגיה הגדולות נמצאות בעיצומו של המרוץ לפיתוח בינת-על שכזו. מגוגל, אפל, אמזון ומטא ועד למלכת ה-AI הנוכחית, חברת OpenAI הצעירה, זו שהשיקה את מהפכת הבינה היוצרת והיצירתית (GenAI), פיתחה את דאלי ואת. הצ'ט בוט המצליח בעולם ChatGPT ושועטת עכשיו קדימה בפיתוח הבינה המלאכותית הכללית.


#מה בינה כללית תדע לעשות?
נזכיר שבינה מלאכותית הכללית, מעבר לתחכום שלה, מסוגלת לבצע מגוון משימות רחב, לפתור בעיות לפני שנוצרו ולמלא משימות מושלמות, מבלי שיתכנתו אותה ליכולת ספציפית כלשהי. היא פשוט תלמד כל יכולת כזו שתצטרך בעצמה ותדע לבצעה כאילו כל חייה היא עשתה זאת...

כבר עכשיו ברור שמערכת AGI סופר אינטליגנטית שכזו תתאפיין בתבונה כללית ויכולת להפעיל שיקול דעת, תוך קבלת החלטות מורכבות. לצד זה יהיו לה יכולות של הבנת שפה טבעית של בני אדם, ביחד עם למידה עצמאית של מידע חדש ובכך שיפור מתמיד של יכולותיה לתחומים ומיומנויות חדשות (ללא תכנות ספציפי), ביכולות של חשיבה מופשטת ויכולת להבין וליישם מושגים מופשטים, כולל במצבים חדשים.

לא פחות חשובה היא היכולת היצירתית החשובה כל כך של העברה בין תחומים, כלומר היכולת לנייד ולהעביר בין תחומי דעת שונים ידע, מיומנויות ויכולות שונות. כך, חברים, נולדים המצאות, פתרונות לבעיות והברקות הנדסיות, מדעיות וטכנולוגיות שונות.

סופר-אינטליגנציה שכזו תקבל בעתיד החלטות ביטחוניות שיילכו וישתבחו, ככל שהיא תלך ותשכלל את עצמה. היא תיקח על עצמה את האחריות על ניהול המערכת הפיננסית, מהאישית ומשפחתית ועד לרמת אוצר המדינה או הבנק הלאומי. היא תנהל מגוון מערכות שירותים ומערכות תשתית, טוב יותר מכל אדם, תמצא תרופות למגוון סוגי הסרטן ותפתור את בעיות האקלים. לא מן הנמנע שפרסי נובל יתרחבו למפתחי בינות-על, שיפצחו בעיות שהמין האנושי לא השכיל לפתור.


#סכנות בינת העל
השאלה העיקרית והמפחידה לא מעט אנשים היא מה יקרה אם או כשבינת העל הזו תחליט שאנו, בני האדם, מיותרים בעולם... זו הסיבה שעולם הטכנולוגיה מלא באזהרות של מומחים מקוגניציית-העל שלה.

כבר עתה ברור שתהיה חובה לייצר פיקוח ורישוי (רגולציה) וחוקים שיחייבו את החברות שיפתחו AGI לקחת אחריות מלאה לנזקים שבינתם עלולה לגרום. מה יהיה שבינות חכמות כל כך יקבלו החלטות שיסכנו ואף יקטלו בני אדם, או שיעדיפו בקבלת ההחלטות שלהן שיקולים שונים מטובת בני-אדם לפני הכל.

כשבידיה של אינטליגנציה עילית שכזו תהיה היכולת לשלוט ישירות בכל המערכות הטכנולוגיות שמקיפות אותנו, לא ניתן יהיה למנוע את ההחלטות שהיא עלולה לקבל, כמו גם את הביצוע שלהן.

לכן ברור שיהיו חייבים להינקט עיצומים מרתיעים וכבדים דיים, כך שימנעו מחברות הטכנולוגיה כניסה להרפתקאות בלתי אחראיות ומסוכנות לאנושות.


הנה ההשפעה הצפויה של הבינה המלאכותית הכללית על המין האנושי (מתורגם):

https://youtu.be/RzkD_rTEBYs


מהי הבינה המלאכותית הכללית?

https://youtu.be/kHFVZV-lj8g


הסבר מפורט לגבי הבינה המלאכותית הכללית:

https://youtu.be/LhLyOWoUnDI?long=yes


האם AGI פרק את צוות החברה המובילה את ה-AI כיום?

https://youtu.be/OphjEzHF5dY?long=yes


והיום כבר מדובר על ASI שתעבור בהרבה את הבינה האנושית:

https://youtu.be/C0RjMAWhvh8?long=yes
מכונות במקום אנשים
מה זה UBI שישמור בעתיד על מובטלי ה-AI?



מדובר ברעיון מסעיר ויצירתי. הוא נקרא "הכנסה בסיסית אוניברסלית" (Universal Basic Income בקיצור UBI) ובעזרתו יש מי שמנסים לקדם את פני הרעה של הקדמה הבינתית, המאיימת על כל עולם התעסוקה של העתיד.

כוונתו להעמיד לרשות כל אדם הכנסה בסיסית, שמטרתה לסייע בהפחתת ההשפעות של הטכנולוגיה על העובדים. הכנסה בסיסית כזו תחושב על ידי "חישוב בסיסי אוניברסלי" ודי אחיד.

הרעיון הוא להציע הכנסה בסיסית אוניברסלית, מעין תשלום מזומן, ללא תנאים, שיינתן לכל מבוגרי האוכלוסייה, ללא קשר לעושרם ולמצבם התעסוקתי. המטרה היא לספק רשת ביטחון לאנשים שהמשרות והתעסוקה שלהם מאוימות על ידי חידושי הטכנולוגיה, כולל ובמיוחד הרובוטיקה והבינה המלאכותית.

הכוונה היא לאפשר להם לחפש עבודה בתחומים שמדברים אליהם ומעניינים אותם, בדברים שיסייעו להם לממש את עצמם והם יכולים להצליח בהם, לבלוט ולנצנץ - אולי אפילו ליזום עסק משלהם וליצור לעצמם בסיס כלכלי מבלי להיות שכירים, באיום מתמיד של אבטלה...

גם אם שמרנים רבים נוטים לדחות את מה שהם תופסים כרווחה שתקטין את המוטיבציה של אנשים לחפש עבודה ולעבוד, ניסיונות לחלק UBI לתושבי ערים ומדינות בארצות הברית הראו תוצאות חיוביות בדרך כלל. חלק מהתוכניות הללו, אגב, העניקו את התשלומים באופן סלקטיבי לאנשים, על סמך הצורך המוכח או המעמד החברתי שלהם ולא לכל האוכלוסייה כולה.

בין התומכים ביוזמה הזו ניתן למצוא גם רבים מראשי ומצליחני ההייטק, כולל מי שמובילים את התפוצצות ה-AI הנוכחית, ביניהם מנכ"ל חברת OpenAI והאדם הכי חזק בעולם הבינה המלאכותית כרגע, סם אלטמן.

לשיטתו, דווקא בשל החשש שהבינה המלאכותית תלך ותחליף אינספור עובדים אנושיים, כולל אנשים שלמדו מקצועות ורכשו תארים ומומחיות ויהפכו למובטלים, אולי אפילו מובטלים כרוניים, דווקא בצל החשש הזה כדאי לתת את ההכנסה הבסיסית המדוברת.

לשיטתו של אלטמן, כל אזרח יקבל, אולי במקום כסף, חלק ממחשב סופר-מתקדם, שהוא מכנה לצורך העניין GPT-7. כל מקבל כזה, אלטמן גורס, יכול יהיה לעשות כרצונו בחלק שקיבל. יהיו מי שישתמשו בו ויקימו מיזם, למשל טכנולוגי, או יהיו שותפים במיזם כזה, אחרים ירצו אולי למכור את החלק שלהם לאחרים, יהיו שיעדיפו לתרום אותו לטובת מחקר בפתרון בעיות עולמיות, כמו משבר האקלים או חקר הסרטן.

ההנחה של מנכ"ל OpenAI היא שעם הטמעתה של הבינה המלאכותית המתקדמת ביותר ויותר היבטים של חיינו, הבעלות על יחידה של מודל שפה גדול, כזה שהוא מכנה GPT7, עשויה להיות בעלת ערך גדול יותר מאשר כסף. אלטמן רואה עולם בו כל אדם בחברה העתידית יחזיק למעשה חלק מהקידמה והיצרנות העתידית ויוכלו להבטיח לעצמם ולמשפחתם פרנסה בעתיד.


הנה רעיון ההכנסה הבסיסית אוניברסלית (עברית):

https://youtu.be/8rM_-49DPe4


בטלנות? רוגע כלכלי? - על ניסוי ראשון איך זה ישפיע על בני אדם? (עברית)

https://youtu.be/u_-N_AWQQiI


בעלי מקצוע מפחדים על העבודה שלהם (עברית):

https://youtu.be/0AGYOv0sGHg


וסרטון מקיף על ה-UBI ומשמעויותיו (מתורגם):

https://youtu.be/kl39KHS07Xc?long=yes


טפשת הרשת
מהי טפשת ה-AI שתפגע באיכות התוכן והקוד?



אחת התופעות שמתחילות להתגלות בשנים האחרונות, מאז הפריצה של הבינה המלאכותית הגנרטיבית, היא של טפשת שגורמת הבינה הגנרטיבית למידע ולתוכן באינטרנט.

ברור שהשימוש הכל כך קל ב-Generative AI מקל על המשתמשים, אבל ידוע לכל שיש לבדוק את המידע שהיא יוצרת לפני שמחזירים אותו לציבור כמידע שיצרו בני אדם. מסתבר שרבים לא מבינים את החולשות והפגמים שעדיין מלאים בהם מודלי השפה, אותם מודלים גדולים (LLMs) שעושים היום את הידע. אם אלה תכנים שהתקבלו מקלוד או ChatGPT, רכיבי AI שנועדו לייצר קוד בתכנות, וידאו או תמונות גנרטיביות שיוצרים מנועים שונים ועוד.

התופעה הזו כבר פוגעת באיכות המידע באינטרנט, לפי בדיקות אובייקטיביות שעורכים באופן תקופתי לאיכות הרשת. מסתבר שלא זו בלבד שבני אדם מסתמכים על מידע שחלקו לא מדויק בלשון המעטה, אלא שהקרולרים עצמם, אותן תוכנות שאוספות את המידע מהרשת לצורך אימון, הזנת ועדכון מודלי השפה הגדולים - מסתבר שהם עצמם מסתמכים על המידע הגרוע הזה. ובדיוק כך, הוא חוזר למודל השפה ונכנס לתוכן שמקוטלג לטוקנים (Tokens) ובחזרה לדאטה שעליו הם מסתמכים. התוצאה היא שיותר ויותר מידע לא בדוק ולא אחראי, שהגיע מלכתחילה לרשת ממודלי שפה לא בשלים מספיק, חוזר ומפרה את המודלים הבוגרים, שאמורים לקבל מידע אנושי ואיכותי ולא תמיד יודעים לאתר את השגיאות שבו.

גם בעולם העסקים והארגונים יש כבר החמרה. הירידה באיכות התוכן שבאינטרנט נובעת מהשימוש הגובר והולך בחומר בינוני, שהגיע מהבינה המלאכותית הגנרטיבית, אך לא בוגרת, של הדור הראשון. כבר עם ההשקה של ChatGPT ב-2022, גילו מנהלים את הצ'טבוט שמאפשר להם ליצור חומרים באמצעות בינה מלאכותית יוצרת (generative AI) וחיפשו דרכים להשתמש בהם, במקום בעבודה של עובדים או חברות מיקור החוץ שבהם השתמשו בעבר. מעט מאותם מאמצים התגלו כיעילים ומרביתם נשארו בפוטנציאל יותר מאשר החליפו עובדים.

אך בתחום התכנות זה כן קרה. מסתבר שמודלים כמו CoPilot, Claude ואחרים מייצרים קוד במהירות ומחליפים את הג'וניורים, המתכנתים הצעירים בתעשייה. לפי סקרים שמתפרסמים בעולם נראה שקצב האימוץ של המנועים הללו הוא גבוה, במיוחד ביחס לזמן הקצר שבו הם פועלים. אלא שבסוף 2024 מתחיל להסתבר שכ-40% מהמתכנתים בעולם משתמשים בכלים כאלה ומשגרים קוד שלפחות בחלקו הוא פחות מוצלח. קוד זה חוזר ו"נלמד" על ידי המודלים ומוריד את איכות התכנות שלהם באופן מתמשך, שעלול אף להחמיר.
מה בין צ'אטבוט, LLM וסוכן AI שמבצע משימות?



צ'אטבוט (Chatbot) הוא סוג של סייען חכם וממוחשב, שניתן לשוחח איתו בהתכתבות צ'אט, או במקרה של צ'אטבוט מתקדם יותר גם שיחה מבוססת דיבור.

כמובן שהצ'אטבוט הוא מערכת מבוססת AI (בינה מלאכותית, או אינטליגנציה מלאכותית) שמייצרת שיחה מלאכותית עם המשתמש - מבלי שבצד השני נמצא אדם אמיתי.

בעשור השני של המאה ה-21 הצ'אטבוט הלך ותפס את מקומו ברשת ובאפליקציות שונות והפך לדרך חדשה לחלוטין להשתמש באינטרנט. לקוחות מצאו את עצמם מנהלים התכתבות בצ'אט או שיחה אוטומטיות עם בוט, שנתן מענה מותאם אישית ושיפר את עצמו עם הזמן.

הצ'טבוט הבטיח לספק שירות לאורך כל שעות היממה, 24/7. הוא סימן הפחתה של המון מהעומס של שירות הלקוחות האנושי, חסך זמן למתעניינים וללקוחות שביקשו שירות וחסך לעסקים הרבה כסף.

התגלה שבוט AI ממוקד ואיכותי מסוגל להציע תגובות מהירות ומדויקות, מה שהוביל לשיפור ניכר בחוויית הלקוח ולעלייה בשביעות הרצון, אף שהיו לקוחות שהתעקשו לשוחח עם בן אדם, שהיה עמוס עכשיו פחות ולכן גם זמין להם הרבה יותר.

היתרונות של הצ'טבוט בטיפול אישי במשתמש ובלקוח היו עצומים. שולבו בו טכנולוגיות פרסונליזציה מתקדמות שהלכו והתפתחו, תוך גיוס הבינה המלאכותית לצרכי השיווק, המכירות והתמיכה.

רבים חזו שצ'אטבוטים עשויים להחליף חלק ניכר מהשימוש באתרי שירותים שונים ולייתר אותם בעתיד, מה שהתממש אבל חלקית.

בזמנו החליטה פייסבוק להשתמש בצ'אטבוטים בתוך שירות המסרים שלה מסנג'ר. היא אפשרה למפתחים חיצוניים לפתח צ'אטבוטים שיתנו שירותים ומידע מאתרים אחרים. ההכרזה על פלטפורמת הצ'אט בוט של פייסבוק מסנג'ר קדמה את רעיון הצ'אטבוטים המקוונים באופן משמעותי, במיוחד למשתמש הנייד בסמארטפונים ושעונים חכמים, אם כי הזינוק הטרנדי שנוצר עם ההשקה הלך ונרגע עם הזמן.

ההבשלה של אותם צ'אטבוטים באה בעשור הבא דווקא. זה קרה עם הגעתו של ChatGPT, מודל השפה הגדול הראשון (LLM), שאחריו הגיעו נוספים, כמו Gemini או Claude. מודל השפה הזה הוא בעיקרון מנוע בינה מלאכותית גדול ורחב-אופקים, המצויד ביכולת להבין שפה טבעית, אנושית, ויכול לעשות המון דברים, כלומר להתמודד עם מגוון ענקי של משימות ושהיכולות שלו הולכות וגדלות מיום ליום. ראו בתגית "LLM".

ממודלי השפה הגדולים התפתחו גם מנועי היצירה של הבינה הג'נרטיבית (Generative AI), המייצרים תמונות, שירים, וידאו ועוד. הכירו בתגית "GenAI".

אחריו נולדו סוכני ה-AI, צ'אטבוטים שממלאים משימות עבורך, על ידי שילוב בין היכולת הבינתית של מודל השפה הגדול כמו ChatGPT, עם היכולת של רכיב תוכנה שיכול לפעול באופן עצמאי וממוקד, למילוי של משימה ספציפית עבורנו, כמו לתכנן טיול, לקנות מוצרים אונליין, לטפל בדואר האלקטרוני שלנו וכדומה.

אותם סוכני AI הם רכיבי תוכנה אוטונומיים, יישומים מבוססי בינה מלאכותית, המסוגלים לתפוס את סביבתם, לקבל החלטות ולפעול לביצוע או השגת מטרות ממוקדות בשירות המשתמש. הכירו אותם בתגית "סוכני AI".

כלומר, אם הצ'טבוט של העשור שהחל ב-2010 היה עובד חרוץ אך לא חכם מדי, הצ'טבוט הבינתי של מודל השפה הגדול בעשור שאחריו רכש השכלה ופיתח את יכולותיו האינטליגנטיות באופן שהפך אותו למומחה ואז מגיע הסוכן הבינתי, AI agent והוא כבר עובד שמתמחה במשימה מסוימת ועושה אותה בצורה מיומנת וחרוצה.

עסקה טובה לרובנו.


פעילות נחמדה
============
בקישורים שלמטה יש לינק לצ'ט בוט נהדר. נסו לשוחח איתה (באנגלית) ולהכיר קצת את חוויית השיחה עם צ'ט בוט אופייני.


הנה עולם הצ'אטבוט:

http://youtu.be/iE9LtfQAYYU


עוד על השימוש בצ'אטבוטים ברשת:

http://youtu.be/G8z--x5tFOI


ההכרזה על הצ'אט בוט במסנג'ר של פייסבוק:

http://youtu.be/EOYnFUJyOlQ


ומנגד - כשהושק הצ'אטבוט של מיקרוסופט הוא "הסתבך" עם ביטויי גזענות קשים:

http://youtu.be/LA49GBcbudg
אילו מקצועות ייפגעו מהבינה המלאכותית הגנרטיבית?



אנו בעידן הצ'אט בוט המדהים של Open AI שנקרא ChatGPT. ה-GPT הוא קיצור בראשי תיבות של Generative Pre-trained Transformer. הצ'ט בוט הזה מוביל שורה של פיתוחים דומים ולמעשה הוליד, כמעט יש מאין, עולם חדש של טכנולוגיות. יצירתיות, חדשניות ומדהימות.

העניין הזה כבר הוליד פועל חדש בעברית, כשהמערכות הללו מתחילות לג'נרט (מלשון generate), כלומר לייצר תוכן באופן אוטומטי על ידי מחשבים ומודלי שפה תבוניים, דוגמת ChatGPT, Claude, Gemini ודומיהם.

מודלי השפה הללו מתקדמים במהירות והמירוץ לפתחם ימשיך. במקביל לעבודה המדהימה שעושים המפתחים של O.AI יוצאים כל הזמן כלים מתחרים, כולל של ענקיות כמו גוגל, פייסבוק ואמזון, העובדות על מוצרים דומים.

ביחס לכל מוצר AI שהיה נגיש לציבור בעבר, ChatGPT ומקביליו עושים דברים מדהימים, מהפכניים וכמעט בלתי נתפשים במהירות שהם מבוצעים.

אז נכון שיש לצ'אט הזה ולעמיתיו עוד דרך עד שנוכל לסמוך עליו ועל הידע והמידע שהיא מציע לנו בכל התחומים, אבל בתחומים מסוימים הם כבר כאן ועם יכולות בינה מלאכותית שהן די מהפכניות. בעניינים אחרים המרוץ לבשלות ככל הנראה ימשיך והם יגיעו די מהר...

קשה אולי להאמין שהמקצועות שאנו מכירים ייעלמו לגמרי. וגם אלו שאכן ייעלמו - זה לא יקרה מיד, אבל זה תהליך שיימשך, תהליך בו מקצועות עבודה יהפכו יותר ויותר למקצועות של פיקוח על הבינה המלאכותית שעושה אותה.

כשהאדם מפקח על עבודת המכונה, הוא יצטרך להיות בתחום כדי להיכנס לפעולה כשהמכונה נתקלת בבעיה שהיא לא יודעת לפתור, לא מתפקדת, מתקלקלת וכדומה.

אז אילו סוגי מקצועות ייפגעו מהבינה? - ההערכה היא שבעיקר מדובר בעבודות הקשורות בשפה. כל מי שמשתמשים בעבודה שלהם בשפה, באופן ישיר ומשמעותי ולא הכרח ביכולות אחרות, פיזיות, ליטרלי שריריות, יכולים לשער שהבינה המלאכותית תוכל לבצע במעלה ההתפתחות שלה את מלאכתם.

עיתונאים, מידענים, תחקירנים, אנשי שיווק, פרסום ויוצרי תוכן, מתכנתים ואפילו מוסיקאים - אצל כולם השפה היא כלי מרכזי בו הם עושים שימוש בליבת שיטת העבודה. אז זה לא שלא יהיו עיתונאי-על, או מוסיקאים אנושיים - הם פשוט יהיו מעטים ומעולים. השאר ימצאו את עצמם מוקפים באנשים שאינם אנשי מקצוע, אך למדו לנצל כלי AI ולייצר תוצרים שייתחרו בשלהם.

גם אנשי מדיה צריכים לדעת שהמקצועות שלהם יעברו שינויים משמעותיים ולמעשה כבר עוברים. עורכי סרטים, צלמים, יוצרי סרטים, מקליטים, עובדי אולפנים, טכנאי סאונד, עורכי אפקטים ומעצבים גרפיים - המקצועות הללו כבר עוברים שינויים וכדאי שיתעדכנו בהם היטב כי כך יוכלו להשתנות עם התחום ולהתבגר לחידושי ה-AI שייכנסו אליו, למצוינות והובלה בו.


הנה השפעת הבינה המלאכותית על העולם האנושי שלנו (מתורגם):

https://youtu.be/RzkD_rTEBYs


יחליף את המורים? - למה בחינוך מודאגים ממודל השפה החדש?

https://youtu.be/Fn8jDanbf0c


האם הג'י פי טי יחליף למשל את הסופרים ויכתוב ספרים, כמו שהוא מייצר היום ספרי ילדים (עברית):

https://youtu.be/sDjFRAP0Szg


ומה הוא עושה לתלמידים והמורים (עברית):

https://youtu.be/vmmUiyeGNB8?long=yes


אֵאוּרִיקַה - האנציקלופדיה של הסקרנות!

העולם הוא צבעוני ומופלא, אאוריקה כאן בשביל שתגלו אותו...

אלפי נושאים, תמונות וסרטונים, מפתיעים, מסקרנים וממוקדים.

ניתן לנווט בין הפריטים במגע, בעכבר, בגלגלת, או במקשי המקלדת

בואו לגלות, לחקור, ולקבל השראה!

אֵאוּרִיקַה - האנציקלופדיה של הסקרנות!

שלום,
נראה שכבר הכרתם את אאוריקה. בטח כבר גיליתם כאן דברים מדהימים, אולי כבר שאלתם שאלות וקיבלתם תשובות טובות.
נשמח לראות משהו מכם בספר האורחים שלנו: איזו מילה טובה, חוות דעת, עצה חכמה לשיפור או כל מה שיש לכם לספר לנו על אאוריקה, כפי שאתם חווים אותה.